mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/30445 Create distributed and rpc directories under caffe/test for better management of unit tests. Differential Revision: D18702786 fbshipit-source-id: e9daeed0cfb846ef68806f6decfcb57c0e0e3606
130 lines
7.1 KiB
Python
130 lines
7.1 KiB
Python
import torch
|
|
import torch.jit
|
|
from torch.testing._internal.common_utils import run_tests, TEST_WITH_UBSAN, IS_PPC
|
|
from torch.testing._internal.common_quantization import QuantizationTestCase, \
|
|
ModelMultipleOps, ModelMultipleOpsNoAvgPool
|
|
from torch.testing._internal.common_quantized import override_quantized_engine
|
|
|
|
class ModelNumerics(QuantizationTestCase):
|
|
def test_float_quant_compare_per_tensor(self):
|
|
for qengine in ["fbgemm", "qnnpack"]:
|
|
if qengine not in torch.backends.quantized.supported_engines:
|
|
continue
|
|
if qengine == 'qnnpack':
|
|
if IS_PPC or TEST_WITH_UBSAN:
|
|
continue
|
|
with override_quantized_engine(qengine):
|
|
torch.manual_seed(42)
|
|
my_model = ModelMultipleOps().to(torch.float32)
|
|
my_model.eval()
|
|
calib_data = torch.rand(1024, 3, 15, 15, dtype=torch.float32)
|
|
eval_data = torch.rand(1, 3, 15, 15, dtype=torch.float32)
|
|
out_ref = my_model(eval_data)
|
|
qModel = torch.quantization.QuantWrapper(my_model)
|
|
qModel.eval()
|
|
qModel.qconfig = torch.quantization.default_qconfig
|
|
torch.quantization.fuse_modules(qModel.module, [['conv1', 'bn1', 'relu1']], inplace=True)
|
|
torch.quantization.prepare(qModel, inplace=True)
|
|
qModel(calib_data)
|
|
torch.quantization.convert(qModel, inplace=True)
|
|
out_q = qModel(eval_data)
|
|
SQNRdB = 20 * torch.log10(torch.norm(out_ref) / torch.norm(out_ref - out_q))
|
|
# Quantized model output should be close to floating point model output numerically
|
|
# Setting target SQNR to be 30 dB so that relative error is 1e-3 below the desired
|
|
# output
|
|
self.assertGreater(SQNRdB, 30, msg='Quantized model numerics diverge from float, expect SQNR > 30 dB')
|
|
|
|
def test_float_quant_compare_per_channel(self):
|
|
# Test for per-channel Quant
|
|
torch.manual_seed(67)
|
|
my_model = ModelMultipleOps().to(torch.float32)
|
|
my_model.eval()
|
|
calib_data = torch.rand(2048, 3, 15, 15, dtype=torch.float32)
|
|
eval_data = torch.rand(10, 3, 15, 15, dtype=torch.float32)
|
|
out_ref = my_model(eval_data)
|
|
q_model = torch.quantization.QuantWrapper(my_model)
|
|
q_model.eval()
|
|
q_model.qconfig = torch.quantization.default_per_channel_qconfig
|
|
torch.quantization.fuse_modules(q_model.module, [['conv1', 'bn1', 'relu1']], inplace=True)
|
|
torch.quantization.prepare(q_model)
|
|
q_model(calib_data)
|
|
torch.quantization.convert(q_model)
|
|
out_q = q_model(eval_data)
|
|
SQNRdB = 20 * torch.log10(torch.norm(out_ref) / torch.norm(out_ref - out_q))
|
|
# Quantized model output should be close to floating point model output numerically
|
|
# Setting target SQNR to be 35 dB
|
|
self.assertGreater(SQNRdB, 35, msg='Quantized model numerics diverge from float, expect SQNR > 35 dB')
|
|
|
|
def test_fake_quant_true_quant_compare(self):
|
|
for qengine in ["fbgemm", "qnnpack"]:
|
|
if qengine not in torch.backends.quantized.supported_engines:
|
|
continue
|
|
if qengine == 'qnnpack':
|
|
if IS_PPC or TEST_WITH_UBSAN:
|
|
continue
|
|
with override_quantized_engine(qengine):
|
|
torch.manual_seed(67)
|
|
my_model = ModelMultipleOpsNoAvgPool().to(torch.float32)
|
|
calib_data = torch.rand(2048, 3, 15, 15, dtype=torch.float32)
|
|
eval_data = torch.rand(10, 3, 15, 15, dtype=torch.float32)
|
|
my_model.eval()
|
|
out_ref = my_model(eval_data)
|
|
fq_model = torch.quantization.QuantWrapper(my_model)
|
|
fq_model.train()
|
|
fq_model.qconfig = torch.quantization.default_qat_qconfig
|
|
torch.quantization.fuse_modules(fq_model.module, [['conv1', 'bn1', 'relu1']], inplace=True)
|
|
torch.quantization.prepare_qat(fq_model)
|
|
fq_model.eval()
|
|
fq_model.apply(torch.quantization.disable_fake_quant)
|
|
fq_model.apply(torch.nn.intrinsic.qat.freeze_bn_stats)
|
|
fq_model(calib_data)
|
|
fq_model.apply(torch.quantization.enable_fake_quant)
|
|
fq_model.apply(torch.quantization.disable_observer)
|
|
out_fq = fq_model(eval_data)
|
|
SQNRdB = 20 * torch.log10(torch.norm(out_ref) / torch.norm(out_ref - out_fq))
|
|
# Quantized model output should be close to floating point model output numerically
|
|
# Setting target SQNR to be 35 dB
|
|
self.assertGreater(SQNRdB, 35, msg='Quantized model numerics diverge from float, expect SQNR > 35 dB')
|
|
torch.quantization.convert(fq_model)
|
|
out_q = fq_model(eval_data)
|
|
SQNRdB = 20 * torch.log10(torch.norm(out_fq) / (torch.norm(out_fq - out_q) + 1e-10))
|
|
self.assertGreater(SQNRdB, 60, msg='Fake quant and true quant numerics diverge, expect SQNR > 60 dB')
|
|
|
|
# Test to compare weight only quantized model numerics and
|
|
# activation only quantized model numerics with float
|
|
def test_weight_only_activation_only_fakequant(self):
|
|
for qengine in ["fbgemm", "qnnpack"]:
|
|
if qengine not in torch.backends.quantized.supported_engines:
|
|
continue
|
|
if qengine == 'qnnpack':
|
|
if IS_PPC or TEST_WITH_UBSAN:
|
|
continue
|
|
with override_quantized_engine(qengine):
|
|
torch.manual_seed(67)
|
|
calib_data = torch.rand(2048, 3, 15, 15, dtype=torch.float32)
|
|
eval_data = torch.rand(10, 3, 15, 15, dtype=torch.float32)
|
|
qconfigset = set([torch.quantization.default_weight_only_qconfig,
|
|
torch.quantization.default_activation_only_qconfig])
|
|
SQNRTarget = [35, 45]
|
|
for idx, qconfig in enumerate(qconfigset):
|
|
my_model = ModelMultipleOpsNoAvgPool().to(torch.float32)
|
|
my_model.eval()
|
|
out_ref = my_model(eval_data)
|
|
fq_model = torch.quantization.QuantWrapper(my_model)
|
|
fq_model.train()
|
|
fq_model.qconfig = qconfig
|
|
torch.quantization.fuse_modules(fq_model.module, [['conv1', 'bn1', 'relu1']], inplace=True)
|
|
torch.quantization.prepare_qat(fq_model)
|
|
fq_model.eval()
|
|
fq_model.apply(torch.quantization.disable_fake_quant)
|
|
fq_model.apply(torch.nn.intrinsic.qat.freeze_bn_stats)
|
|
fq_model(calib_data)
|
|
fq_model.apply(torch.quantization.enable_fake_quant)
|
|
fq_model.apply(torch.quantization.disable_observer)
|
|
out_fq = fq_model(eval_data)
|
|
SQNRdB = 20 * torch.log10(torch.norm(out_ref) / torch.norm(out_ref - out_fq))
|
|
self.assertGreater(SQNRdB, SQNRTarget[idx], msg='Quantized model numerics diverge from float')
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|