pytorch/test/cpp/api/misc.cpp
Will Feng e8087a3060 Change C++ API test files to only include torch/torch.h (#27067)
Summary:
One of the purposes of the C++ API tests in `test/cpp/api/` should be to check that including `torch/torch.h` is a sufficient prerequisite for using all C++ frontend features. This PR change ensures that.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27067

Differential Revision: D17856815

Pulled By: yf225

fbshipit-source-id: 49c057bd807b003e4a00f6ba73131d763a0f277a
2019-10-10 09:46:29 -07:00

84 lines
1.9 KiB
C++

#include <gtest/gtest.h>
#include <torch/torch.h>
#include <test/cpp/api/support.h>
#include <functional>
using namespace torch::test;
void torch_warn_once_A() {
TORCH_WARN_ONCE("warn once");
}
void torch_warn_once_B() {
TORCH_WARN_ONCE("warn something else once");
}
void torch_warn() {
TORCH_WARN("warn multiple times");
}
TEST(UtilsTest, WarnOnce) {
{
std::stringstream buffer;
CerrRedirect cerr_redirect(buffer.rdbuf());
torch_warn_once_A();
torch_warn_once_A();
torch_warn_once_B();
torch_warn_once_B();
ASSERT_EQ(count_substr_occurrences(buffer.str(), "warn once"), 1);
ASSERT_EQ(count_substr_occurrences(buffer.str(), "warn something else once"), 1);
}
{
std::stringstream buffer;
CerrRedirect cerr_redirect(buffer.rdbuf());
torch_warn();
torch_warn();
torch_warn();
ASSERT_EQ(count_substr_occurrences(buffer.str(), "warn multiple times"), 3);
}
}
TEST(NoGradTest, SetsGradModeCorrectly) {
torch::manual_seed(0);
torch::NoGradGuard guard;
torch::nn::Linear model(5, 2);
auto x = torch::randn({10, 5}, torch::requires_grad());
auto y = model->forward(x);
torch::Tensor s = y.sum();
// Mimicking python API behavior:
ASSERT_THROWS_WITH(s.backward(),
"element 0 of tensors does not require grad and does not have a grad_fn")
}
struct AutogradTest : torch::test::SeedingFixture {
AutogradTest() {
x = torch::randn({3, 3}, torch::requires_grad());
y = torch::randn({3, 3});
z = x * y;
}
torch::Tensor x, y, z;
};
TEST_F(AutogradTest, CanTakeDerivatives) {
z.backward(torch::ones_like(z));
ASSERT_TRUE(x.grad().allclose(y));
}
TEST_F(AutogradTest, CanTakeDerivativesOfZeroDimTensors) {
z.sum().backward();
ASSERT_TRUE(x.grad().allclose(y));
}
TEST_F(AutogradTest, CanPassCustomGradientInputs) {
z.sum().backward(torch::ones({}) * 2);
ASSERT_TRUE(x.grad().allclose(y * 2));
}