pytorch/test/test_pytree.py
Jane Xu c19cda5782 [skip ci] Add test owners for a special hi-pri class of tests (#67553)
Summary:
Action following https://github.com/pytorch/pytorch/issues/66232

This change does require some context: there were several suggestions regarding what to do about this group of tests: tests that are core and crucial to all of PyTorch and are too broad to be owned by one team.
1. Let's add a "module: core" and put people behind it! This idea sounds appealing unless you are one of the people backing the label. From talking to albanD among others, this idea of putting all these core tests on the shoulder of a few people or one team isn't super fair and I have not yet found anyone willing to take on this job.
2. Taking advantage of the fact that we already have a triaging oncall that takes turns triaging issues, we can leave these tests essentially unlabeled and allow the oncall to triage these tests. Since these tests are crucial to PyTorch, we'll add the "high priority" label to mark them different from other unowned tests (see https://github.com/pytorch/pytorch/issues/67552).
3. I _could_ still create an unbacked label "module: core" and attribute these tests there, but I don't like the idea of creating a facade that the tests are "triaged" to a label when no one is actually taking a look.

Now we could potentially break these tests down into smaller files so that each piece _could_ be owned by a team, but 1. I don't know if this is currently feasible and 2. This approach does not prevent that from happening in the future.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67553

Reviewed By: albanD

Differential Revision: D32025004

Pulled By: janeyx99

fbshipit-source-id: 1fb1aa4c27e305695ab6e80ae3d02f90519939c0
2021-10-29 12:17:21 -07:00

209 lines
7.5 KiB
Python

# Owner(s): ["high priority"]
import torch
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.utils._pytree import tree_flatten, tree_map, tree_unflatten, TreeSpec, LeafSpec
from torch.utils._pytree import _broadcast_to_and_flatten
from collections import namedtuple
class TestPytree(TestCase):
def test_treespec_equality(self):
self.assertTrue(LeafSpec() == LeafSpec())
self.assertTrue(TreeSpec(list, None, []) == TreeSpec(list, None, []))
self.assertTrue(TreeSpec(list, None, [LeafSpec()]) == TreeSpec(list, None, [LeafSpec()]))
self.assertFalse(TreeSpec(tuple, None, []) == TreeSpec(list, None, []))
self.assertTrue(TreeSpec(tuple, None, []) != TreeSpec(list, None, []))
def test_flatten_unflatten_leaf(self):
def run_test_with_leaf(leaf):
values, treespec = tree_flatten(leaf)
self.assertEqual(values, [leaf])
self.assertEqual(treespec, LeafSpec())
unflattened = tree_unflatten(values, treespec)
self.assertEqual(unflattened, leaf)
run_test_with_leaf(1)
run_test_with_leaf(1.)
run_test_with_leaf(None)
run_test_with_leaf(bool)
run_test_with_leaf(torch.randn(3, 3))
def test_flatten_unflatten_list(self):
def run_test(lst):
expected_spec = TreeSpec(list, None, [LeafSpec() for _ in lst])
values, treespec = tree_flatten(lst)
self.assertTrue(isinstance(values, list))
self.assertEqual(values, lst)
self.assertEqual(treespec, expected_spec)
unflattened = tree_unflatten(values, treespec)
self.assertEqual(unflattened, lst)
self.assertTrue(isinstance(unflattened, list))
run_test([])
run_test([1., 2])
run_test([torch.tensor([1., 2]), 2, 10, 9, 11])
def test_flatten_unflatten_tuple(self):
def run_test(tup):
expected_spec = TreeSpec(tuple, None, [LeafSpec() for _ in tup])
values, treespec = tree_flatten(tup)
self.assertTrue(isinstance(values, list))
self.assertEqual(values, list(tup))
self.assertEqual(treespec, expected_spec)
unflattened = tree_unflatten(values, treespec)
self.assertEqual(unflattened, tup)
self.assertTrue(isinstance(unflattened, tuple))
run_test(())
run_test((1.,))
run_test((1., 2))
run_test((torch.tensor([1., 2]), 2, 10, 9, 11))
def test_flatten_unflatten_namedtuple(self):
Point = namedtuple('Point', ['x', 'y'])
def run_test(tup):
expected_spec = TreeSpec(namedtuple, Point, [LeafSpec() for _ in tup])
values, treespec = tree_flatten(tup)
self.assertTrue(isinstance(values, list))
self.assertEqual(values, list(tup))
self.assertEqual(treespec, expected_spec)
unflattened = tree_unflatten(values, treespec)
self.assertEqual(unflattened, tup)
self.assertTrue(isinstance(unflattened, Point))
run_test(Point(1., 2))
run_test(Point(torch.tensor(1.), 2))
def test_flatten_unflatten_torch_namedtuple_return_type(self):
x = torch.randn(3, 3)
expected = torch.max(x, dim=0)
values, spec = tree_flatten(expected)
result = tree_unflatten(values, spec)
self.assertEqual(type(result), type(expected))
self.assertEqual(result, expected)
def test_flatten_unflatten_dict(self):
def run_test(tup):
expected_spec = TreeSpec(dict, list(tup.keys()),
[LeafSpec() for _ in tup.values()])
values, treespec = tree_flatten(tup)
self.assertTrue(isinstance(values, list))
self.assertEqual(values, list(tup.values()))
self.assertEqual(treespec, expected_spec)
unflattened = tree_unflatten(values, treespec)
self.assertEqual(unflattened, tup)
self.assertTrue(isinstance(unflattened, dict))
run_test({})
run_test({'a': 1})
run_test({'abcdefg': torch.randn(2, 3)})
run_test({1: torch.randn(2, 3)})
run_test({'a': 1, 'b': 2, 'c': torch.randn(2, 3)})
def test_flatten_unflatten_nested(self):
def run_test(pytree):
values, treespec = tree_flatten(pytree)
self.assertTrue(isinstance(values, list))
self.assertEqual(len(values), treespec.num_leaves)
# NB: python basic data structures (dict list tuple) all have
# contents equality defined on them, so the following works for them.
unflattened = tree_unflatten(values, treespec)
self.assertEqual(unflattened, pytree)
cases = [
[()],
([],),
{'a': ()},
{'a': 0, 'b': [{'c': 1}]},
{'a': 0, 'b': [1, {'c': 2}, torch.randn(3)], 'c': (torch.randn(2, 3), 1)},
]
def test_treemap(self):
def run_test(pytree):
def f(x):
return x * 3
sm1 = sum(map(tree_flatten(pytree)[0], f))
sm2 = tree_flatten(tree_map(f, pytree))[0]
self.assertEqual(sm1, sm2)
def invf(x):
return x // 3
self.assertEqual(tree_flatten(tree_flatten(pytree, f), invf), pytree)
cases = [
[()],
([],),
{'a': ()},
{'a': 1, 'b': [{'c': 2}]},
{'a': 0, 'b': [2, {'c': 3}, 4], 'c': (5, 6)},
]
for case in cases:
run_test(case)
def test_treespec_repr(self):
# Check that it looks sane
pytree = (0, [0, 0, 0])
_, spec = tree_flatten(pytree)
self.assertEqual(
repr(spec), 'TreeSpec(tuple, None, [*, TreeSpec(list, None, [*, *, *])])')
def test_broadcast_to_and_flatten(self):
cases = [
(1, (), []),
# Same (flat) structures
((1,), (0,), [1]),
([1], [0], [1]),
((1, 2, 3), (0, 0, 0), [1, 2, 3]),
({'a': 1, 'b': 2}, {'a': 0, 'b': 0}, [1, 2]),
# Mismatched (flat) structures
([1], (0,), None),
([1], (0,), None),
((1,), [0], None),
((1, 2, 3), (0, 0), None),
({'a': 1, 'b': 2}, {'a': 0}, None),
({'a': 1, 'b': 2}, {'a': 0, 'c': 0}, None),
({'a': 1, 'b': 2}, {'a': 0, 'b': 0, 'c': 0}, None),
# Same (nested) structures
((1, [2, 3]), (0, [0, 0]), [1, 2, 3]),
((1, [(2, 3), 4]), (0, [(0, 0), 0]), [1, 2, 3, 4]),
# Mismatched (nested) structures
((1, [2, 3]), (0, (0, 0)), None),
((1, [2, 3]), (0, [0, 0, 0]), None),
# Broadcasting single value
(1, (0, 0, 0), [1, 1, 1]),
(1, [0, 0, 0], [1, 1, 1]),
(1, {'a': 0, 'b': 0}, [1, 1]),
(1, (0, [0, [0]], 0), [1, 1, 1, 1]),
(1, (0, [0, [0, [], [[[0]]]]], 0), [1, 1, 1, 1, 1]),
# Broadcast multiple things
((1, 2), ([0, 0, 0], [0, 0]), [1, 1, 1, 2, 2]),
((1, 2), ([0, [0, 0], 0], [0, 0]), [1, 1, 1, 1, 2, 2]),
(([1, 2, 3], 4), ([0, [0, 0], 0], [0, 0]), [1, 2, 2, 3, 4, 4]),
]
for pytree, to_pytree, expected in cases:
_, to_spec = tree_flatten(to_pytree)
result = _broadcast_to_and_flatten(pytree, to_spec)
self.assertEqual(result, expected, msg=str([pytree, to_spec, expected]))
if __name__ == '__main__':
run_tests()