mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Export of embedding bag with dynamic list of offsets. Pull Request resolved: https://github.com/pytorch/pytorch/pull/44693 Reviewed By: malfet Differential Revision: D23831980 Pulled By: bzinodev fbshipit-source-id: 3eaff1a0f20d1bcfb8039e518d78c491be381e1a
260 lines
12 KiB
Python
260 lines
12 KiB
Python
|
|
import torch
|
|
from torch.nn.modules.utils import _single, _pair, _triple
|
|
import torch.onnx
|
|
# This import monkey-patches graph manipulation methods on Graph, used for the
|
|
# ONNX symbolics
|
|
import torch.onnx.utils
|
|
|
|
import torch.onnx.symbolic_helper as sym_help
|
|
from torch.onnx.symbolic_helper import parse_args, _unimplemented
|
|
import torch.onnx.symbolic_opset9
|
|
|
|
from sys import maxsize
|
|
|
|
# EDITING THIS FILE? READ THIS FIRST!
|
|
# see Note [Edit Symbolic Files] in symbolic_helper.py
|
|
|
|
# This file exports ONNX ops for opset 10
|
|
# Opset 10 is supported by ONNX release 1.5.0
|
|
# release on 04/24/19
|
|
|
|
|
|
@parse_args('v', 'i', 'i', 'none')
|
|
def sort(g, self, dim, decending, out=None):
|
|
return sym_help._sort_helper(g, self, dim, decending=decending, out=out)
|
|
|
|
|
|
@parse_args('v', 'v', 'i', 'i', 'i', 'none')
|
|
def topk(g, self, k, dim, largest, sorted, out=None):
|
|
return sym_help._topk_helper(g, self, k, dim, largest=largest, sorted=sorted, out=out)
|
|
|
|
|
|
def _max_pool(name, tuple_fn, ndims, return_indices):
|
|
@parse_args('v', 'is', 'is', 'is', 'is', 'i')
|
|
def symbolic_fn(g, input, kernel_size, stride, padding, dilation, ceil_mode):
|
|
if not stride:
|
|
stride = kernel_size
|
|
kwargs = {
|
|
'kernel_shape_i': tuple_fn(kernel_size),
|
|
'pads_i': tuple_fn(padding) * 2,
|
|
'strides_i': tuple_fn(stride),
|
|
'ceil_mode_i': ceil_mode,
|
|
}
|
|
if set(tuple_fn(dilation)) != {1}:
|
|
kwargs['dilations_i'] = tuple_fn(dilation)
|
|
# easy but hacky way to get flattened indices values
|
|
# to be used to convert the indices values to non-flattened.
|
|
# In ONNX the indices are computed as a flatten 1-D tensor,
|
|
# so the values in indices are in [0, N x C x D1 x ... x Dn).
|
|
# To convert the indices to the same format used by Pytorch,
|
|
# we first execute a maxpool with a kernel and stride of 1 on the same input.
|
|
# This will result in a tensor of indices in which each index will have it's own value.
|
|
# Using this tensor as a reference, we extract the first index of each axis and subtract
|
|
# it from each index of this axis in the indices to convert.
|
|
# This step will result in a tensor were each dimension has values of indices within
|
|
# the dimension it is in.
|
|
# For more information :
|
|
# https://github.com/pytorch/pytorch/pull/16455#issuecomment-460776407
|
|
if return_indices:
|
|
r, indices = g.op("MaxPool", input, outputs=2, **kwargs)
|
|
_, flattened_indices = g.op("MaxPool", input, outputs=2,
|
|
kernel_shape_i=[1 for _ in range(ndims)],
|
|
strides_i=[1 for _ in range(ndims)])
|
|
# convert indices to have non-flattened indices values
|
|
from torch.onnx.symbolic_opset9 import sub
|
|
s = sym_help._slice_helper(g, flattened_indices, axes=[2 + i for i in range(ndims)],
|
|
starts=tuple_fn(0), ends=tuple_fn(1))
|
|
indices = sub(g, indices, s)
|
|
return r, indices
|
|
else:
|
|
r = g.op("MaxPool", input, outputs=1, **kwargs)
|
|
return r
|
|
|
|
return symbolic_fn
|
|
|
|
|
|
max_pool1d = _max_pool("max_pool1d", _single, 1, return_indices=False)
|
|
max_pool2d = _max_pool("max_pool2d", _pair, 2, return_indices=False)
|
|
max_pool3d = _max_pool("max_pool3d", _triple, 3, return_indices=False)
|
|
max_pool1d_with_indices = _max_pool("max_pool1d_with_indices", _single, 1, return_indices=True)
|
|
max_pool2d_with_indices = _max_pool("max_pool2d_with_indices", _pair, 2, return_indices=True)
|
|
max_pool3d_with_indices = _max_pool("max_pool3d_with_indices", _triple, 3, return_indices=True)
|
|
|
|
|
|
def _avg_pool(name, tuple_fn):
|
|
@parse_args('v', 'is', 'is', 'is', 'i', 'i', 'none')
|
|
def symbolic_fn(g, input, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override=None):
|
|
if not stride:
|
|
stride = kernel_size
|
|
padding = sym_help._avgpool_helper(tuple_fn, padding, kernel_size, stride, divisor_override, name)
|
|
if count_include_pad:
|
|
input = g.op("Pad", input,
|
|
pads_i=((0,) * 2 + padding) * 2,
|
|
mode_s='constant',
|
|
value_f=0.)
|
|
padding = (0,) * len(padding)
|
|
output = g.op("AveragePool", input,
|
|
kernel_shape_i=tuple_fn(kernel_size),
|
|
strides_i=tuple_fn(stride),
|
|
pads_i=padding * 2,
|
|
ceil_mode_i=ceil_mode)
|
|
return output
|
|
return symbolic_fn
|
|
|
|
|
|
avg_pool1d = _avg_pool('avg_pool1d', _single)
|
|
avg_pool2d = _avg_pool('avg_pool2d', _pair)
|
|
avg_pool3d = _avg_pool('avg_pool3d', _triple)
|
|
|
|
|
|
def _interpolate(name, dim, interpolate_mode):
|
|
def symbolic_fn(g, input, output_size, *args):
|
|
scales, align_corners = sym_help._get_interpolate_attributes(g, interpolate_mode, args)
|
|
sym_help._interpolate_warning(interpolate_mode)
|
|
align_corners = sym_help._maybe_get_scalar(align_corners)
|
|
if align_corners:
|
|
return _unimplemented(name, "align_corners == True")
|
|
if scales is None:
|
|
scales = sym_help._interpolate_size_to_scales(g, input, output_size, dim)
|
|
return g.op("Resize", input, scales, mode_s=interpolate_mode)
|
|
return symbolic_fn
|
|
|
|
|
|
upsample_nearest1d = _interpolate('upsample_nearest1d', 3, "nearest")
|
|
upsample_nearest2d = _interpolate('upsample_nearest2d', 4, "nearest")
|
|
upsample_nearest3d = _interpolate('upsample_nearest3d', 5, "nearest")
|
|
upsample_linear1d = _interpolate('upsample_linear1d', 3, "linear")
|
|
upsample_bilinear2d = _interpolate('upsample_bilinear2d', 4, "linear")
|
|
upsample_trilinear3d = _interpolate('upsample_trilinear3d', 5, "linear")
|
|
|
|
def __interpolate(g, input, size, scale_factor, mode , align_corners, recompute_scale_factor):
|
|
scales, mode = sym_help._interpolate_get_scales_and_mode(g, input, size, scale_factor,
|
|
mode , align_corners)
|
|
return g.op("Resize", input, scales, mode_s=mode)
|
|
|
|
|
|
def _slice(g, input, axes, starts, ends, steps=None, dynamic_slice=False):
|
|
if dynamic_slice:
|
|
starts = g.op("Unsqueeze", starts, axes_i=[0])
|
|
ends = g.op("Unsqueeze", ends, axes_i=[0])
|
|
if isinstance(axes, int):
|
|
axes = g.op("Constant", value_t=torch.tensor(axes))
|
|
axes = g.op("Unsqueeze", axes, axes_i=[0])
|
|
else:
|
|
assert len(starts) == len(ends)
|
|
assert len(starts) == len(axes)
|
|
assert steps is None or len(starts) == len(steps)
|
|
if len(starts) == 1 and starts[0] == 0 and ends[0] == 9223372036854775807 \
|
|
and (steps is None or (len(steps) == 1 and steps[0] == 1)):
|
|
return input
|
|
axes = g.op("Constant", value_t=torch.tensor(axes))
|
|
starts = g.op("Constant", value_t=torch.tensor(starts))
|
|
ends = g.op("Constant", value_t=torch.tensor(ends))
|
|
if steps is None:
|
|
return g.op("Slice", input, starts, ends, axes)
|
|
steps = g.op("Constant", value_t=torch.tensor(steps))
|
|
return g.op("Slice", input, starts, ends, axes, steps)
|
|
|
|
|
|
def slice(g, self, *args):
|
|
if len(args) == 4:
|
|
# aten::slice(Tensor self, int dim, int start, int end, int step) -> Tensor
|
|
dim, start, end, step = args
|
|
elif len(args) == 3:
|
|
# aten::slice(t[] l, int start, int end, int step) -> t[]
|
|
start, end, step = args
|
|
dim = 0
|
|
else:
|
|
raise NotImplementedError("Unknown aten::slice signature")
|
|
|
|
step = sym_help._parse_arg(step, 'i')
|
|
if (start.node().kind() != 'onnx::Constant' or
|
|
(not isinstance(end, int) and end.node().kind() != 'onnx::Constant') or
|
|
(not isinstance(dim, int) and dim.node().kind() != 'onnx::Constant')):
|
|
dynamic_slice = True
|
|
else:
|
|
start = [sym_help._parse_arg(start, 'i')]
|
|
end = [sym_help._parse_arg(end, 'i')]
|
|
dim = [sym_help._parse_arg(dim, 'i')]
|
|
dynamic_slice = False
|
|
return sym_help._slice_helper(g, self, axes=dim, starts=start, ends=end, steps=[step], dynamic_slice=dynamic_slice)
|
|
|
|
|
|
@parse_args('v', 'is')
|
|
def flip(g, input, dims):
|
|
return sym_help._slice_helper(g, input, axes=dims,
|
|
starts=[-1] * len(dims),
|
|
ends=[-9223372036854775807] * len(dims),
|
|
steps=[-1] * len(dims))
|
|
|
|
|
|
def fmod(g, input, other):
|
|
return g.op("Mod", input, other, fmod_i=1)
|
|
|
|
|
|
@parse_args('v', 'v', 'v', 'i', 'i', 'i', 'v', 'i')
|
|
def embedding_bag(g,
|
|
embedding_matrix,
|
|
indices,
|
|
offsets,
|
|
scale_grad_by_freq,
|
|
mode,
|
|
sparse,
|
|
per_sample_weights,
|
|
include_last_offset):
|
|
if scale_grad_by_freq and sym_help._training_mode:
|
|
return sym_help._onnx_unsupported('embedding_bag with scale_grad_by_freq for training mode')
|
|
from torch.onnx.symbolic_opset9 import select
|
|
import warnings
|
|
warnings.warn("Export of embedding_bag with dynamic input/offsets shape is not supported in opset 10. "
|
|
"Please use opset 11 or higher to export model for dynamic input shape.'")
|
|
if offsets.type().sizes() is not None:
|
|
if include_last_offset:
|
|
offset_len = offsets.type().sizes()[0] - 1
|
|
offsets_extended = offsets
|
|
else:
|
|
offset_len = offsets.type().sizes()[0]
|
|
offsets_extended = [offsets, g.op("Constant", value_t=torch.tensor([maxsize]))]
|
|
offsets_extended = g.op("Concat", *offsets_extended, axis_i=0)
|
|
list_ = []
|
|
for i in range(offset_len):
|
|
start_ = g.op("Unsqueeze", select(g, offsets_extended, torch.tensor(0), torch.tensor(i)), axes_i=[0])
|
|
end_ = g.op("Unsqueeze", select(g, offsets_extended, torch.tensor(0), torch.tensor(i + 1)), axes_i=[0])
|
|
axes_ = g.op("Constant", value_t=torch.tensor([0]))
|
|
indices_row = g.op("Slice", indices, start_, end_, axes_)
|
|
|
|
embeddings = g.op("Gather", embedding_matrix, indices_row)
|
|
if not sym_help._is_none(per_sample_weights):
|
|
per_sample_weights_row = g.op("Slice", per_sample_weights, start_, end_, axes_)
|
|
per_sample_weights_row = g.op("Unsqueeze", per_sample_weights_row, axes_i=[1])
|
|
embeddings = g.op("Mul", embeddings, per_sample_weights_row)
|
|
if mode == 0:
|
|
embeddings = g.op("ReduceSum", embeddings, axes_i=[0], keepdims_i=0)
|
|
elif mode == 1:
|
|
embeddings = g.op("ReduceMean", embeddings, axes_i=[0], keepdims_i=0)
|
|
else:
|
|
embeddings = g.op("ReduceMax", embeddings, axes_i=[0], keepdims_i=0)
|
|
|
|
embeddings = g.op("Unsqueeze", embeddings, axes_i=[0])
|
|
list_.append(embeddings)
|
|
|
|
output = g.op("Concat", *list_, axis_i=0)
|
|
# aten::embedding_bag returns a tuple of 4 elements: output, offset2bag, bag_size, max_indices.
|
|
# But the last three outputs are not used in torch.nn.EmbeddingBag or torch.nn.functional.embedding_bag.
|
|
return output, None, None, None
|
|
else:
|
|
return sym_help._onnx_unsupported('embedding_bag with unknown shape of offsets for opset 10 is not supported. '
|
|
'please use opset 11 or higher.')
|
|
|
|
|
|
@parse_args('v', 't', 'i', 'i', 'i')
|
|
def fake_quantize_per_tensor_affine(g, inputs, scale, zero_point, quant_min=-128, quant_max=127):
|
|
if quant_min not in [0, -128] or quant_max not in [127, 255]:
|
|
raise RuntimeError(
|
|
"ONNX defines [0, 255] for quint8 and [-128, 127] for qint8, got [{}, {}]".format(quant_min, quant_max))
|
|
scale = scale.float().data # Avoid exporter generating double type
|
|
zero_point_dtype = torch.int8 if quant_min == -128 else torch.uint8
|
|
zero_point = torch.tensor(zero_point, dtype=zero_point_dtype) # ONNX requires zero_point to be tensor
|
|
return g.op("DequantizeLinear", g.op("QuantizeLinear", inputs, scale, zero_point), scale, zero_point)
|