pytorch/c10/util/quint4x2.h
Supriya Rao 04526a49d3 [quant] creating quint4x2 dtype for quantized tensors (#44678)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44678

This is a prototype PR that introduces 4 bit qtensors. The new dtype added for this is c10::quint4x2
The underlying storage for this is still uint8_t, so we pack 2 4-bit values in a byte while quantizing it.

This change uses most of the existing scaffolding for qtensor storage. We allocate storage
based on the dtype before creating a new qtensor.

It also adds a dispatch mechanism for this dtype so we can use this to get the bitwidth, qmin and qmax info
while quantizing and packing the qtensor (when we add 2-bit qtensor)

Kernels that use this dtype should be aware of the packing format.

Test Plan:
Locally tested
```
x = torch.ones((100, 100), dtype=torch.float)
qx_8bit = torch.quantize_per_tensor(x, scale=1.0, zero_point=2, dtype=torch.quint8)
qx = torch.quantize_per_tensor(x, scale=1.0, zero_point=2, dtype=torch.quint4x2)

torch.save(x, "temp.p")
print('Size float (B):', os.path.getsize("temp.p"))
os.remove('temp.p')

torch.save(qx_8bit, "temp.p")
print('Size quantized 8bit(B):', os.path.getsize("temp.p"))
os.remove('temp.p')

torch.save(qx, "temp.p")
print('Size quantized 4bit(B):', os.path.getsize("temp.p"))
os.remove('temp.p')
```

Size float (B): 40760
Size quantized 8bit(B): 10808
Size quantized 4bit(B): 5816

Imported from OSS

Reviewed By: raghuramank100

Differential Revision: D23993134

fbshipit-source-id: 073bf262f9680416150ba78ed2d932032275946d
2020-10-01 23:53:34 -07:00

19 lines
363 B
C++

#pragma once
#include <cstdint>
#include <c10/macros/Macros.h>
namespace c10 {
/**
* quint4x2 is for un-signed 4 bit quantized Tensors that are packed to byte boundary.
*/
struct alignas(1) quint4x2 {
using underlying = uint8_t;
uint8_t val_;
quint4x2() = default;
C10_HOST_DEVICE explicit quint4x2(uint8_t val) : val_(val) {}
};
} // namespace c10