pytorch/benchmarks
Shijun Kong 6ae0a7c919 Add ReplaceNaN benchmark as baseline (#46685)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46685

as title

Test Plan:
caffe2

```
./buck-out/gen/caffe2/benchmarks/operator_benchmark/c2/replace_nan_test.par

# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking Caffe2: replace_nan
WARNING: Logging before InitGoogleLogging() is written to STDERR
W1022 10:09:48.508246 1887813 init.h:137] Caffe2 GlobalInit should be run before any other API calls.
# Name: replace_nan_M16_N16_dtypefloat
# Input: M: 16, N: 16, dtype: float
Forward Execution Time (us) : 30.742

# Benchmarking Caffe2: replace_nan
# Name: replace_nan_M16_N16_dtypedouble
# Input: M: 16, N: 16, dtype: double
Forward Execution Time (us) : 29.135

# Benchmarking Caffe2: replace_nan
# Name: replace_nan_M64_N64_dtypefloat
# Input: M: 64, N: 64, dtype: float
Forward Execution Time (us) : 94.059

# Benchmarking Caffe2: replace_nan
# Name: replace_nan_M64_N64_dtypedouble
# Input: M: 64, N: 64, dtype: double
Forward Execution Time (us) : 93.569
```

Reviewed By: qizzzh, houseroad

Differential Revision: D24448483

fbshipit-source-id: 51574ca0eca6dba5828dfdc754193dba5a62954f
2020-10-22 19:12:14 -07:00
..
cpp/tensorexpr [pytorch][te] Add compilation time benchmark (#46124) 2020-10-09 23:11:37 -07:00
distributed/ddp Add distributed data parallel benchmark tool (#35198) 2020-04-08 15:07:03 -07:00
fastrnns Benchmarks: tweak PE config settings. (#45349) 2020-09-26 23:13:29 -07:00
framework_overhead_benchmark Remove py2 compatible future imports (#44735) 2020-09-16 12:55:57 -07:00
functional_autograd_benchmark Reland of benchmark code (#43428) 2020-08-24 13:27:26 -07:00
operator_benchmark Add ReplaceNaN benchmark as baseline (#46685) 2020-10-22 19:12:14 -07:00
overrides_benchmark Add __torch_function__ for methods (#37091) 2020-08-05 20:44:13 -07:00
profiler_benchmark Source code level attribution in profiler (#43898) 2020-09-30 00:57:35 -07:00
record_function_benchmark Fix D23995953 import. 2020-09-29 19:30:23 -07:00
serialization [JIT] Make new zip serialization for torch save/load significantly (~70%) faster (#38379) 2020-05-29 01:56:18 -07:00
static_runtime [StaticRuntime] Threading model (#46219) 2020-10-20 14:37:30 -07:00
tensorexpr [JIT] Add dynamic shape benchmark for NV Fuser (#46107) 2020-10-09 22:09:21 -07:00
compare-fastrnn-results.py Benchmarks: add scripts for FastRNNs results comparison. (#44134) 2020-09-03 13:44:42 -07:00
compare.sh Benchmarks: add scripts for FastRNNs results comparison. (#44134) 2020-09-03 13:44:42 -07:00
README.md Fix spelling errors 2020-01-28 04:46:15 -08:00
upload_scribe.py Benchmarks: make fuser and executor configurable from command line. (#44291) 2020-09-09 11:59:35 -07:00

PyTorch Benchmarks

NOTE: This folder is currently work in progress.

This folder contains scripts that produce reproducible timings of various PyTorch features.

It also provides mechanisms to compare PyTorch with other frameworks.

Setup environment

Make sure you're on a machine with CUDA, torchvision, and pytorch installed. Install in the following order:

# Install torchvision. It comes with the pytorch stable release binary
conda install pytorch torchvision -c pytorch

# Install the latest pytorch master from source.
# It should supersede the installation from the release binary.
cd $PYTORCH_HOME
python setup.py build develop

# Check the pytorch installation version
python -c "import torch; print(torch.__version__)"

Benchmark List

Please refer to each subfolder to discover each benchmark suite