mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/46685 as title Test Plan: caffe2 ``` ./buck-out/gen/caffe2/benchmarks/operator_benchmark/c2/replace_nan_test.par # ---------------------------------------- # PyTorch/Caffe2 Operator Micro-benchmarks # ---------------------------------------- # Tag : short # Benchmarking Caffe2: replace_nan WARNING: Logging before InitGoogleLogging() is written to STDERR W1022 10:09:48.508246 1887813 init.h:137] Caffe2 GlobalInit should be run before any other API calls. # Name: replace_nan_M16_N16_dtypefloat # Input: M: 16, N: 16, dtype: float Forward Execution Time (us) : 30.742 # Benchmarking Caffe2: replace_nan # Name: replace_nan_M16_N16_dtypedouble # Input: M: 16, N: 16, dtype: double Forward Execution Time (us) : 29.135 # Benchmarking Caffe2: replace_nan # Name: replace_nan_M64_N64_dtypefloat # Input: M: 64, N: 64, dtype: float Forward Execution Time (us) : 94.059 # Benchmarking Caffe2: replace_nan # Name: replace_nan_M64_N64_dtypedouble # Input: M: 64, N: 64, dtype: double Forward Execution Time (us) : 93.569 ``` Reviewed By: qizzzh, houseroad Differential Revision: D24448483 fbshipit-source-id: 51574ca0eca6dba5828dfdc754193dba5a62954f |
||
|---|---|---|
| .. | ||
| cpp/tensorexpr | ||
| distributed/ddp | ||
| fastrnns | ||
| framework_overhead_benchmark | ||
| functional_autograd_benchmark | ||
| operator_benchmark | ||
| overrides_benchmark | ||
| profiler_benchmark | ||
| record_function_benchmark | ||
| serialization | ||
| static_runtime | ||
| tensorexpr | ||
| compare-fastrnn-results.py | ||
| compare.sh | ||
| README.md | ||
| upload_scribe.py | ||
PyTorch Benchmarks
NOTE: This folder is currently work in progress.
This folder contains scripts that produce reproducible timings of various PyTorch features.
It also provides mechanisms to compare PyTorch with other frameworks.
Setup environment
Make sure you're on a machine with CUDA, torchvision, and pytorch installed. Install in the following order:
# Install torchvision. It comes with the pytorch stable release binary
conda install pytorch torchvision -c pytorch
# Install the latest pytorch master from source.
# It should supersede the installation from the release binary.
cd $PYTORCH_HOME
python setup.py build develop
# Check the pytorch installation version
python -c "import torch; print(torch.__version__)"
Benchmark List
Please refer to each subfolder to discover each benchmark suite