mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/33957 lots of small preprocessor warning cleanup for windows Test Plan: CI green Reviewed By: malfet, albanD Differential Revision: D20153582 fbshipit-source-id: 18fd61c466fd1f55ededdae4448b3009a9cedc04
177 lines
5.0 KiB
C++
177 lines
5.0 KiB
C++
#include "caffe2/utils/threadpool/ThreadPool.h"
|
|
#include "WorkersPool.h"
|
|
#include "caffe2/core/logging.h"
|
|
|
|
#include <cpuinfo.h>
|
|
|
|
C10_DEFINE_bool(
|
|
caffe2_threadpool_force_inline,
|
|
false,
|
|
"Force to always run jobs on the calling thread");
|
|
|
|
// Whether or not threadpool caps apply to Android
|
|
C10_DEFINE_int(caffe2_threadpool_android_cap, true, "");
|
|
|
|
// Whether or not threadpool caps apply to iOS
|
|
C10_DEFINE_int(caffe2_threadpool_ios_cap, true, "");
|
|
|
|
namespace caffe2 {
|
|
|
|
size_t getDefaultNumThreads() {
|
|
CAFFE_ENFORCE(cpuinfo_initialize(), "cpuinfo initialization failed");
|
|
int numThreads = cpuinfo_get_processors_count();
|
|
|
|
bool applyCap = false;
|
|
#if defined(C10_ANDROID)
|
|
applyCap = FLAGS_caffe2_threadpool_android_cap;
|
|
#elif defined(C10_IOS)
|
|
applyCap = FLAGS_caffe2_threadpool_ios_cap;
|
|
#endif
|
|
|
|
if (applyCap) {
|
|
switch (numThreads) {
|
|
#if defined(C10_ANDROID) && (CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64)
|
|
case 4:
|
|
switch (cpuinfo_get_core(0)->midr & UINT32_C(0xFF00FFF0)) {
|
|
case UINT32_C(0x51002110): /* Snapdragon 820 Kryo Silver */
|
|
case UINT32_C(0x51002010): /* Snapdragon 821 Kryo Silver */
|
|
case UINT32_C(0x51002050): /* Snapdragon 820/821 Kryo Gold */
|
|
/* Kryo: 2+2 big.LITTLE */
|
|
numThreads = 2;
|
|
break;
|
|
default:
|
|
/* Anything else: assume homogeneous architecture */
|
|
numThreads = 4;
|
|
break;
|
|
}
|
|
break;
|
|
#endif
|
|
case 5:
|
|
/* 4+1 big.LITTLE */
|
|
numThreads = 4;
|
|
break;
|
|
case 6:
|
|
/* 2+4 big.LITTLE */
|
|
numThreads = 2;
|
|
break;
|
|
case 8:
|
|
/* 4+4 big.LITTLE */
|
|
numThreads = 4;
|
|
break;
|
|
case 10:
|
|
/* 4+4+2 Min.Med.Max, running on Med cores */
|
|
numThreads = 4;
|
|
break;
|
|
default:
|
|
if (numThreads > 4) {
|
|
numThreads = numThreads / 2;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return numThreads;
|
|
}
|
|
|
|
// Default smallest amount of work that will be partitioned between
|
|
// multiple threads; the runtime value is configurable
|
|
constexpr size_t kDefaultMinWorkSize = 1;
|
|
|
|
size_t ThreadPool::defaultNumThreads_ = 0;
|
|
|
|
std::unique_ptr<ThreadPool> ThreadPool::defaultThreadPool() {
|
|
defaultNumThreads_ = getDefaultNumThreads();
|
|
LOG(INFO) << "Constructing thread pool with " << defaultNumThreads_
|
|
<< " threads";
|
|
return std::make_unique<ThreadPool>(defaultNumThreads_);
|
|
}
|
|
|
|
ThreadPool::ThreadPool(int numThreads)
|
|
: minWorkSize_(kDefaultMinWorkSize),
|
|
numThreads_(numThreads),
|
|
workersPool_(std::make_shared<WorkersPool>()) {}
|
|
|
|
ThreadPool::~ThreadPool() {}
|
|
|
|
int ThreadPool::getNumThreads() const {
|
|
return numThreads_;
|
|
}
|
|
|
|
// Sets the number of threads
|
|
// # of threads should not be bigger than the number of big cores
|
|
void ThreadPool::setNumThreads(size_t numThreads) {
|
|
if (defaultNumThreads_ == 0) {
|
|
defaultNumThreads_ = getDefaultNumThreads();
|
|
}
|
|
numThreads_ = std::min(numThreads, defaultNumThreads_);
|
|
}
|
|
|
|
// Sets the minimum work size (range) for which to invoke the
|
|
// threadpool; work sizes smaller than this will just be run on the
|
|
// main (calling) thread
|
|
void ThreadPool::setMinWorkSize(size_t size) {
|
|
std::lock_guard<std::mutex> guard(executionMutex_);
|
|
minWorkSize_ = size;
|
|
}
|
|
|
|
void ThreadPool::run(const std::function<void(int, size_t)>& fn, size_t range) {
|
|
const auto numThreads = numThreads_.load(std::memory_order_relaxed);
|
|
|
|
std::lock_guard<std::mutex> guard(executionMutex_);
|
|
// If there are no worker threads, or if the range is too small (too
|
|
// little work), just run locally
|
|
const bool runLocally = range < minWorkSize_ ||
|
|
FLAGS_caffe2_threadpool_force_inline || (numThreads == 0);
|
|
if (runLocally) {
|
|
// Work is small enough to just run locally; multithread overhead
|
|
// is too high
|
|
for (size_t i = 0; i < range; ++i) {
|
|
fn(0, i);
|
|
}
|
|
return;
|
|
}
|
|
|
|
struct FnTask : public Task {
|
|
FnTask(){};
|
|
~FnTask() override{};
|
|
const std::function<void(int, size_t)>* fn_;
|
|
int idx_;
|
|
size_t start_;
|
|
size_t end_;
|
|
void Run() override {
|
|
for (auto i = start_; i < end_; ++i) {
|
|
(*fn_)(idx_, i);
|
|
}
|
|
}
|
|
};
|
|
|
|
CAFFE_ENFORCE_GE(numThreads_, 1);
|
|
const size_t unitsPerTask = (range + numThreads - 1) / numThreads;
|
|
tasks_.resize(numThreads);
|
|
for (size_t i = 0; i < numThreads; ++i) {
|
|
if (!tasks_[i]) {
|
|
tasks_[i].reset(new FnTask());
|
|
}
|
|
auto* task = (FnTask*)tasks_[i].get();
|
|
task->fn_ = &fn;
|
|
task->idx_ = i;
|
|
task->start_ = std::min<size_t>(range, i * unitsPerTask);
|
|
task->end_ = std::min<size_t>(range, (i + 1) * unitsPerTask);
|
|
if (task->start_ >= task->end_) {
|
|
tasks_.resize(i);
|
|
break;
|
|
}
|
|
CAFFE_ENFORCE_LE(task->start_, range);
|
|
CAFFE_ENFORCE_LE(task->end_, range);
|
|
}
|
|
CAFFE_ENFORCE_LE(tasks_.size(), numThreads);
|
|
CAFFE_ENFORCE_GE(tasks_.size(), 1);
|
|
workersPool_->Execute(tasks_);
|
|
}
|
|
|
|
void ThreadPool::withPool(const std::function<void(WorkersPool*)>& f) {
|
|
std::lock_guard<std::mutex> guard(executionMutex_);
|
|
f(workersPool_.get());
|
|
}
|
|
|
|
} // namespace caffe2
|