pytorch/caffe2/opt/shape_info.cc
Hao Lu c0267c6845 [caffe2] Support data types in shape hints (#45110)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45110

A recent change in DSNN quantizes the ad embedding to 8 bits. Ad embeddings are part of the inputs to the DSNN merge net. To correctly pass shape hints of input tensors including quantized ad embeddings, we need to be able to annotate the data types in shape hints.

A bit on the corner cases, if type is omitted or not a valid type, e.g., white spaces, instead of throwing an exception, I decided to return the default type, float.

Test Plan:
```
buck test caffe2/caffe2/fb/opt:shape_info_utils_test
```

Reviewed By: yinghai

Differential Revision: D23834091

fbshipit-source-id: 5e072144a7a7ff4b5126b618062dfc4041851dd3
2020-09-22 17:49:33 -07:00

231 lines
7.1 KiB
C++

#include "caffe2/opt/shape_info.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/tensor_int8.h"
#include "caffe2/utils/string_utils.h"
namespace caffe2 {
namespace {
bool isNumber(const std::string& s) {
bool empty = true;
for (const char c : s) {
if (std::isalpha(c)) {
return false;
}
if (!std::isspace(c)) {
empty = false;
}
}
return !empty;
}
std::string toLower(const std::string& s) {
std::string t;
t.resize(s.size());
for (size_t i = 0; i < t.size(); i++) {
t[i] = std::tolower(s[i]);
}
return t;
}
TensorProto_DataType toTensorProtoDataType(const std::string& in) {
std::string s = toLower(in);
if (s == "uint8") {
return TensorProto_DataType_UINT8;
} else if (s == "int8") {
return TensorProto_DataType_INT8;
} else if (s == "uint16") {
return TensorProto_DataType_UINT16;
} else if (s == "int16") {
return TensorProto_DataType_INT16;
} else if (s == "int32") {
return TensorProto_DataType_INT32;
} else if (s == "int64") {
return TensorProto_DataType_INT64;
} else if (s == "float16" || s == "half") {
return TensorProto_DataType_FLOAT16;
} else if (s == "float") {
return TensorProto_DataType_FLOAT;
} else if (s == "double") {
return TensorProto_DataType_DOUBLE;
} else if (s == "byte") {
return TensorProto_DataType_BYTE;
} else if (s == "string") {
return TensorProto_DataType_STRING;
} else if (s == "bool") {
return TensorProto_DataType_BOOL;
} else if (s == "hash") {
return TensorProto_DataType_ZERO_COLLISION_HASH;
}
// return default data type, float
return TensorProto_DataType_FLOAT;
}
} // namespace
ShapeInfo getShapeInfoFromBlob(const Blob* blob) {
ShapeInfo shape_info;
shape_info.shape = GetTensorShapeOfBlob(blob);
if (!shape_info.shape.unknown_shape()) {
shape_info.setDimType(std::vector<TensorBoundShape::DimType>(
shape_info.shape.dims_size(), TensorBoundShape_DimType_CONSTANT));
}
if (blob->meta().id() == TypeMeta::Id<int8::Int8TensorCPU>()) {
shape_info.is_quantized = true;
LoadInt8TensorInfoOfBlob(
&shape_info.q_info.scale,
&shape_info.q_info.offset,
&shape_info.q_info.axis,
blob);
} else {
#ifndef C10_MOBILE
auto function_ptr =
ExternalTensorFunctionsBaseRegistry()->Create(blob->meta().id());
if (function_ptr != nullptr) {
shape_info.is_quantized = function_ptr->isQuantized();
function_ptr->LoadInfoOfBlob(
blob,
&shape_info.q_info.scale,
&shape_info.q_info.offset,
&shape_info.q_info.axis);
}
#endif
}
return shape_info;
}
void modifyTensorShapeDimSize(
TensorShape* tensor_shape,
int dim_index,
const int64_t old_size,
const int64_t new_size) {
CAFFE_ENFORCE(
old_size > 0, "Old size should be non-zero, old_size: ", old_size);
CAFFE_ENFORCE(
tensor_shape->dims(dim_index) % old_size == 0,
"tensor_shape->dims[",
dim_index,
"] = ",
tensor_shape->dims(dim_index),
" cannot be divided by old_size ",
old_size);
int64_t modified_size = (tensor_shape->dims(dim_index) * new_size) / old_size;
tensor_shape->set_dims(dim_index, modified_size);
}
void changeTensorBoundShapes(
TensorBoundShape& tensor_shape_and_type,
const int64_t old_batch_size,
const int64_t old_seq_size,
const int64_t new_batch_size,
const int64_t new_seq_size) {
CAFFE_ENFORCE(
tensor_shape_and_type.dim_type().size() ==
tensor_shape_and_type.shape().dims().size());
for (int i = 0; i < tensor_shape_and_type.dim_type().size(); i++) {
TensorBoundShape_DimType dim_type = tensor_shape_and_type.dim_type(i);
// Need to change max_batch_size
if (dim_type == TensorBoundShape_DimType_BATCH ||
dim_type == TensorBoundShape_DimType_BATCH_OF_FEATURE_MAX ||
dim_type == TensorBoundShape_DimType_BATCH_OF_FEATURE_MAX_DEFAULT) {
TensorShape* tensor_shape = tensor_shape_and_type.mutable_shape();
modifyTensorShapeDimSize(tensor_shape, i, old_batch_size, new_batch_size);
}
// Need to change max_seq_size
if (dim_type == TensorBoundShape_DimType_BATCH_OF_FEATURE_MAX_DEFAULT ||
dim_type == TensorBoundShape_DimType_FEATURE_MAX_DEFAULT) {
TensorShape* tensor_shape = tensor_shape_and_type.mutable_shape();
modifyTensorShapeDimSize(tensor_shape, i, old_seq_size, new_seq_size);
}
}
}
ShapeInfoMap extractShapeInfoFromTensorBoundShapes(
TensorBoundShapes tensor_bound_shapes,
int64_t new_max_batch_size,
int64_t new_max_feature_len) {
ShapeInfoMap shape_info_map;
if (new_max_batch_size == -1) {
new_max_batch_size = tensor_bound_shapes.max_batch_size();
}
if (new_max_feature_len == -1) {
new_max_feature_len = tensor_bound_shapes.max_feature_len();
}
for (auto& tensor_bound_shape : *(tensor_bound_shapes.mutable_shapes())) {
std::vector<TensorBoundShape::DimType> dim_types;
dim_types.reserve(tensor_bound_shape.shape().dims_size());
for (auto dim_type : tensor_bound_shape.dim_type()) {
dim_types.emplace_back(TensorBoundShape::DimType(dim_type));
}
changeTensorBoundShapes(
tensor_bound_shape,
tensor_bound_shapes.max_batch_size(),
tensor_bound_shapes.max_feature_len(),
new_max_batch_size,
new_max_feature_len);
shape_info_map[tensor_bound_shape.name()] =
ShapeInfo(dim_types, std::move(tensor_bound_shape.shape()));
}
return shape_info_map;
}
bool operator==(const ShapeInfo& lhs, const ShapeInfo& rhs) {
return lhs.getDimType() == rhs.getDimType() &&
lhs.shape.SerializeAsString() == rhs.shape.SerializeAsString();
}
ShapeInfo constructShapeInfoWithDefaultDimType(
TensorShape shape,
TensorBoundShape_DimType defaultFirstDimType) {
std::vector<TensorBoundShape_DimType> dimType(
shape.dims_size(), TensorBoundShape_DimType_CONSTANT);
if (dimType.size()) {
dimType[0] = defaultFirstDimType;
}
return ShapeInfo(dimType, shape);
}
void parseShapeInfoMapFromString(
const std::string& input,
ShapeInfoMap& shape_hints) {
auto hints = caffe2::split('#', input);
for (const auto& hint : hints) {
auto kv = caffe2::split(',', hint);
CAFFE_ENFORCE_GE(kv.size(), 2, "Cannot parse shape hint: ", hint);
const auto& name = kv[0];
TensorShape shape;
size_t size = kv.size();
CAFFE_ENFORCE_GT(size, 1);
if (!isNumber(kv[size - 1])) {
// last value is the type
shape.set_data_type(toTensorProtoDataType(kv[size - 1]));
size--;
} else {
if (name.find("int8") != std::string::npos) {
// Kept for backwards compatibility.
// Set type explicitly to overwrite it.
shape.set_data_type(TensorProto_DataType_UINT8);
} else {
shape.set_data_type(TensorProto_DataType_FLOAT);
}
}
bool valid = true;
for (int i = 1; i < size; i++) {
auto dim = kv[i];
try {
shape.add_dims(std::stoi(dim));
} catch (const std::exception& e) {
valid = false;
CAFFE_THROW("Cannot parse shape hint: ", hint);
}
}
if (valid) {
shape_hints.emplace(name, constructShapeInfoWithDefaultDimType(shape));
}
}
}
} // namespace caffe2