pytorch/test/test_tensorboard.py
Orion Reblitz-Richardson 858d4a6a04 Cleanup API and remove 'experimental' warning (#23000)
Summary:
This fixes ASAN test issues with https://github.com/pytorch/pytorch/pull/21786 seen at https://circleci.com/api/v1.1/project/github/pytorch/pytorch/2212325/output/105/0?file=true and lands it again.

This cleans up the `torch.utils.tensorboard` API to remove all kwargs usage (which isn't clear to the  user) and removes the "experimental" warning in prep for our 1.2 release.

We also don't need the additional PyTorch version checks now that we are in the codebase itself.

cc yf225, lanpa, natalialunova
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23000

Reviewed By: sanekmelnikov

Differential Revision: D16349734

Pulled By: orionr

fbshipit-source-id: 604a9cad56868a55e08b509a0c6f42b84f68de95
2019-07-22 12:10:05 -07:00

612 lines
27 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
import os
import shutil
import sys
import unittest
TEST_TENSORBOARD = True
try:
import tensorboard.summary.writer.event_file_writer # noqa F401
except ImportError:
TEST_TENSORBOARD = False
HAS_TORCHVISION = True
try:
import torchvision
except ImportError:
HAS_TORCHVISION = False
skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")
TEST_CAFFE2 = True
try:
from caffe2.python import brew, cnn, core, workspace
from caffe2.python.model_helper import ModelHelper
except ImportError:
TEST_CAFFE2 = False
skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2")
TEST_MATPLOTLIB = True
try:
import matplotlib
if os.environ.get('DISPLAY', '') == '':
matplotlib.use('Agg')
import matplotlib.pyplot as plt
except ImportError:
TEST_MATPLOTLIB = False
skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib")
import torch
from common_utils import TestCase, run_tests, TEST_WITH_ASAN
def tensor_N(shape, dtype=float):
numel = np.prod(shape)
x = (np.arange(numel, dtype=dtype)).reshape(shape)
return x
class BaseTestCase(TestCase):
""" Base class used for all TensorBoard tests """
def tearDown(self):
super(BaseTestCase, self).tearDown()
if os.path.exists('runs'):
# Remove directory created by SummaryWriter
shutil.rmtree('runs')
if TEST_TENSORBOARD:
from torch.utils.tensorboard import summary, SummaryWriter
from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC
from torch.utils.tensorboard._convert_np import make_np
from torch.utils.tensorboard import _caffe2_graph as c2_graph
class TestTensorBoardPyTorchNumpy(BaseTestCase):
def test_pytorch_np(self):
tensors = [torch.rand(3, 10, 10), torch.rand(1), torch.rand(1, 2, 3, 4, 5)]
for tensor in tensors:
# regular tensor
self.assertIsInstance(make_np(tensor), np.ndarray)
# CUDA tensor
if torch.cuda.device_count() > 0:
self.assertIsInstance(make_np(tensor.cuda()), np.ndarray)
# regular variable
self.assertIsInstance(make_np(torch.autograd.Variable(tensor)), np.ndarray)
# CUDA variable
if torch.cuda.device_count() > 0:
self.assertIsInstance(make_np(torch.autograd.Variable(tensor).cuda()), np.ndarray)
# python primitive type
self.assertIsInstance(make_np(0), np.ndarray)
self.assertIsInstance(make_np(0.1), np.ndarray)
def test_pytorch_autograd_np(self):
x = torch.autograd.Variable(torch.Tensor(1))
self.assertIsInstance(make_np(x), np.ndarray)
def test_pytorch_write(self):
with SummaryWriter() as w:
w.add_scalar('scalar', torch.autograd.Variable(torch.rand(1)), 0)
def test_pytorch_histogram(self):
with SummaryWriter() as w:
w.add_histogram('float histogram', torch.rand((50,)))
w.add_histogram('int histogram', torch.randint(0, 100, (50,)))
def test_pytorch_histogram_raw(self):
with SummaryWriter() as w:
num = 50
floats = make_np(torch.rand((num,)))
bins = [0.0, 0.25, 0.5, 0.75, 1.0]
counts, limits = np.histogram(floats, bins)
sum_sq = floats.dot(floats).item()
w.add_histogram_raw('float histogram raw',
min=floats.min().item(),
max=floats.max().item(),
num=num,
sum=floats.sum().item(),
sum_squares=sum_sq,
bucket_limits=limits[1:].tolist(),
bucket_counts=counts.tolist())
ints = make_np(torch.randint(0, 100, (num,)))
bins = [0, 25, 50, 75, 100]
counts, limits = np.histogram(ints, bins)
sum_sq = ints.dot(ints).item()
w.add_histogram_raw('int histogram raw',
min=ints.min().item(),
max=ints.max().item(),
num=num,
sum=ints.sum().item(),
sum_squares=sum_sq,
bucket_limits=limits[1:].tolist(),
bucket_counts=counts.tolist())
ints = torch.tensor(range(0, 100)).float()
nbins = 100
counts = torch.histc(ints, bins=nbins, min=0, max=99)
limits = torch.tensor(range(nbins))
sum_sq = ints.dot(ints).item()
w.add_histogram_raw('int histogram raw',
min=ints.min().item(),
max=ints.max().item(),
num=num,
sum=ints.sum().item(),
sum_squares=sum_sq,
bucket_limits=limits.tolist(),
bucket_counts=counts.tolist())
class TestTensorBoardUtils(BaseTestCase):
def test_to_HWC(self):
test_image = np.random.randint(0, 256, size=(3, 32, 32), dtype=np.uint8)
converted = convert_to_HWC(test_image, 'chw')
self.assertEqual(converted.shape, (32, 32, 3))
test_image = np.random.randint(0, 256, size=(16, 3, 32, 32), dtype=np.uint8)
converted = convert_to_HWC(test_image, 'nchw')
self.assertEqual(converted.shape, (64, 256, 3))
test_image = np.random.randint(0, 256, size=(32, 32), dtype=np.uint8)
converted = convert_to_HWC(test_image, 'hw')
self.assertEqual(converted.shape, (32, 32, 3))
def test_prepare_video(self):
# At each timeframe, the sum over all other
# dimensions of the video should be the same.
shapes = [(16, 30, 3, 28, 28),
(36, 30, 3, 28, 28),
(19, 29, 3, 23, 19),
(3, 3, 3, 3, 3)]
for s in shapes:
V_input = np.random.random(s)
V_after = _prepare_video(np.copy(V_input))
total_frame = s[1]
V_input = np.swapaxes(V_input, 0, 1)
for f in range(total_frame):
x = np.reshape(V_input[f], newshape=(-1))
y = np.reshape(V_after[f], newshape=(-1))
np.testing.assert_array_almost_equal(np.sum(x), np.sum(y))
def test_numpy_vid_uint8(self):
V_input = np.random.randint(0, 256, (16, 30, 3, 28, 28)).astype(np.uint8)
V_after = _prepare_video(np.copy(V_input)) * 255
total_frame = V_input.shape[1]
V_input = np.swapaxes(V_input, 0, 1)
for f in range(total_frame):
x = np.reshape(V_input[f], newshape=(-1))
y = np.reshape(V_after[f], newshape=(-1))
np.testing.assert_array_almost_equal(np.sum(x), np.sum(y))
freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440]
true_positive_counts = [75, 64, 21, 5, 0]
false_positive_counts = [150, 105, 18, 0, 0]
true_negative_counts = [0, 45, 132, 150, 150]
false_negative_counts = [0, 11, 54, 70, 75]
precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0]
recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0]
class TestTensorBoardWriter(BaseTestCase):
def test_writer(self):
with SummaryWriter() as writer:
sample_rate = 44100
n_iter = 0
writer.add_scalar('data/scalar_systemtime', 0.1, n_iter)
writer.add_scalar('data/scalar_customtime', 0.2, n_iter, walltime=n_iter)
writer.add_scalars('data/scalar_group', {"xsinx": n_iter * np.sin(n_iter),
"xcosx": n_iter * np.cos(n_iter),
"arctanx": np.arctan(n_iter)}, n_iter)
x = np.zeros((32, 3, 64, 64)) # output from network
writer.add_images('Image', x, n_iter) # Tensor
writer.add_image_with_boxes('imagebox',
np.zeros((3, 64, 64)),
np.array([[10, 10, 40, 40], [40, 40, 60, 60]]),
n_iter)
x = np.zeros(sample_rate * 2)
writer.add_audio('myAudio', x, n_iter)
writer.add_video('myVideo', np.random.rand(16, 48, 1, 28, 28).astype(np.float32), n_iter)
writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter)
writer.add_text('markdown Text', '''a|b\n-|-\nc|d''', n_iter)
writer.add_histogram('hist', np.random.rand(100, 100), n_iter)
writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand(
100), n_iter) # needs tensorboard 0.4RC or later
writer.add_pr_curve_raw('prcurve with raw data', true_positive_counts,
false_positive_counts,
true_negative_counts,
false_negative_counts,
precision,
recall, n_iter)
class TestTensorBoardSummaryWriter(BaseTestCase):
def test_summary_writer_ctx(self):
# after using a SummaryWriter as a ctx it should be closed
with SummaryWriter(filename_suffix='.test') as writer:
writer.add_scalar('test', 1)
self.assertIs(writer.file_writer, None)
def test_summary_writer_close(self):
# Opening and closing SummaryWriter a lot should not run into
# OSError: [Errno 24] Too many open files
passed = True
try:
writer = SummaryWriter()
writer.close()
except OSError:
passed = False
self.assertTrue(passed)
def test_pathlib(self):
import sys
if sys.version_info.major == 2:
import pathlib2 as pathlib
else:
import pathlib
p = pathlib.Path('./pathlibtest')
with SummaryWriter(p) as writer:
writer.add_scalar('test', 1)
import shutil
shutil.rmtree(str(p))
class TestTensorBoardEmbedding(BaseTestCase):
def test_embedding(self):
w = SummaryWriter()
all_features = torch.Tensor([[1, 2, 3], [5, 4, 1], [3, 7, 7]])
all_labels = torch.Tensor([33, 44, 55])
all_images = torch.zeros(3, 3, 5, 5)
w.add_embedding(all_features,
metadata=all_labels,
label_img=all_images,
global_step=2)
dataset_label = ['test'] * 2 + ['train'] * 2
all_labels = list(zip(all_labels, dataset_label))
w.add_embedding(all_features,
metadata=all_labels,
label_img=all_images,
metadata_header=['digit', 'dataset'],
global_step=2)
# assert...
def test_embedding_64(self):
w = SummaryWriter()
all_features = torch.Tensor([[1, 2, 3], [5, 4, 1], [3, 7, 7]])
all_labels = torch.Tensor([33, 44, 55])
all_images = torch.zeros((3, 3, 5, 5), dtype=torch.float64)
w.add_embedding(all_features,
metadata=all_labels,
label_img=all_images,
global_step=2)
dataset_label = ['test'] * 2 + ['train'] * 2
all_labels = list(zip(all_labels, dataset_label))
w.add_embedding(all_features,
metadata=all_labels,
label_img=all_images,
metadata_header=['digit', 'dataset'],
global_step=2)
class TestTensorBoardSummary(BaseTestCase):
def test_uint8_image(self):
'''
Tests that uint8 image (pixel values in [0, 255]) is not changed
'''
test_image = np.random.randint(0, 256, size=(3, 32, 32), dtype=np.uint8)
scale_factor = summary._calc_scale_factor(test_image)
self.assertEqual(scale_factor, 1, 'Values are already in [0, 255], scale factor should be 1')
def test_float32_image(self):
'''
Tests that float32 image (pixel values in [0, 1]) are scaled correctly
to [0, 255]
'''
test_image = np.random.rand(3, 32, 32).astype(np.float32)
scale_factor = summary._calc_scale_factor(test_image)
self.assertEqual(scale_factor, 255, 'Values are in [0, 1], scale factor should be 255')
def test_list_input(self):
with self.assertRaises(Exception) as e_info:
summary.histogram('dummy', [1, 3, 4, 5, 6], 'tensorflow')
def test_empty_input(self):
with self.assertRaises(Exception) as e_info:
summary.histogram('dummy', np.ndarray(0), 'tensorflow')
def test_image_with_boxes(self):
self.assertTrue(compare_proto(summary.image_boxes('dummy',
tensor_N(shape=(3, 32, 32)),
np.array([[10, 10, 40, 40]])),
self))
def test_image_with_one_channel(self):
self.assertTrue(compare_proto(summary.image('dummy',
tensor_N(shape=(1, 8, 8)),
dataformats='CHW'),
self)) # noqa E127
def test_image_with_one_channel_batched(self):
self.assertTrue(compare_proto(summary.image('dummy',
tensor_N(shape=(2, 1, 8, 8)),
dataformats='NCHW'),
self)) # noqa E127
def test_image_with_3_channel_batched(self):
self.assertTrue(compare_proto(summary.image('dummy',
tensor_N(shape=(2, 3, 8, 8)),
dataformats='NCHW'),
self)) # noqa E127
def test_image_without_channel(self):
self.assertTrue(compare_proto(summary.image('dummy',
tensor_N(shape=(8, 8)),
dataformats='HW'),
self)) # noqa E127
def test_video(self):
try:
import moviepy # noqa F401
except ImportError:
return
self.assertTrue(compare_proto(summary.video('dummy', tensor_N(shape=(4, 3, 1, 8, 8))), self))
summary.video('dummy', np.random.rand(16, 48, 1, 28, 28))
summary.video('dummy', np.random.rand(20, 7, 1, 8, 8))
def test_audio(self):
self.assertTrue(compare_proto(summary.audio('dummy', tensor_N(shape=(42,))), self))
def test_text(self):
self.assertTrue(compare_proto(summary.text('dummy', 'text 123'), self))
def test_histogram_auto(self):
self.assertTrue(compare_proto(summary.histogram('dummy', tensor_N(shape=(1024,)), bins='auto', max_bins=5), self))
def test_histogram_fd(self):
self.assertTrue(compare_proto(summary.histogram('dummy', tensor_N(shape=(1024,)), bins='fd', max_bins=5), self))
def test_histogram_doane(self):
self.assertTrue(compare_proto(summary.histogram('dummy', tensor_N(shape=(1024,)), bins='doane', max_bins=5), self))
def test_custom_scalars(self):
layout = {'Taiwan': {'twse': ['Multiline', ['twse/0050', 'twse/2330']]},
'USA': {'dow': ['Margin', ['dow/aaa', 'dow/bbb', 'dow/ccc']],
'nasdaq': ['Margin', ['nasdaq/aaa', 'nasdaq/bbb', 'nasdaq/ccc']]}}
summary.custom_scalars(layout) # only smoke test. Because protobuf in python2/3 serialize dictionary differently.
def remove_whitespace(string):
return string.replace(' ', '').replace('\t', '').replace('\n', '')
def compare_proto(str_to_compare, function_ptr):
module_id = function_ptr.__class__.__module__
test_dir = os.path.dirname(sys.modules[module_id].__file__)
functionName = function_ptr.id().split('.')[-1]
expected_file = os.path.join(test_dir,
"expect",
'TestTensorBoard.' + functionName + ".expect")
assert os.path.exists(expected_file)
with open(expected_file) as f:
expected = f.read()
str_to_compare = str(str_to_compare)
# if not remove_whitespace(str_to_compare) == remove_whitespace(expected):
return remove_whitespace(str_to_compare) == remove_whitespace(expected)
def write_proto(str_to_compare, function_ptr):
module_id = function_ptr.__class__.__module__
test_dir = os.path.dirname(sys.modules[module_id].__file__)
functionName = function_ptr.id().split('.')[-1]
expected_file = os.path.join(test_dir,
"expect",
'TestTensorBoard.' + functionName + ".expect")
with open(expected_file, 'w') as f:
f.write(str(str_to_compare))
class TestTensorBoardPytorchGraph(BaseTestCase):
def test_pytorch_graph(self):
dummy_input = (torch.zeros(1, 3),)
class myLinear(torch.nn.Module):
def __init__(self):
super(myLinear, self).__init__()
self.l = torch.nn.Linear(3, 5)
def forward(self, x):
return self.l(x)
with SummaryWriter(comment='LinearModel') as w:
w.add_graph(myLinear(), dummy_input)
def test_mlp_graph(self):
dummy_input = (torch.zeros(2, 1, 28, 28),)
# This MLP class with the above input is expected
# to fail JIT optimizations as seen at
# https://github.com/pytorch/pytorch/issues/18903
#
# However, it should not raise an error during
# the add_graph call and still continue.
class myMLP(torch.nn.Module):
def __init__(self):
super(myMLP, self).__init__()
self.input_len = 1 * 28 * 28
self.fc1 = torch.nn.Linear(self.input_len, 1200)
self.fc2 = torch.nn.Linear(1200, 1200)
self.fc3 = torch.nn.Linear(1200, 10)
def forward(self, x, update_batch_stats=True):
h = torch.nn.functional.relu(
self.fc1(x.view(-1, self.input_len)))
h = self.fc2(h)
h = torch.nn.functional.relu(h)
h = self.fc3(h)
return h
with SummaryWriter(comment='MLPModel') as w:
w.add_graph(myMLP(), dummy_input)
def test_wrong_input_size(self):
with self.assertRaises(RuntimeError) as e_info:
dummy_input = torch.rand(1, 9)
model = torch.nn.Linear(3, 5)
with SummaryWriter(comment='expect_error') as w:
w.add_graph(model, dummy_input) # error
@skipIfNoTorchVision
def test_torchvision_smoke(self):
model_input_shapes = {
'alexnet': (2, 3, 224, 224),
'resnet34': (2, 3, 224, 224),
'resnet152': (2, 3, 224, 224),
'densenet121': (2, 3, 224, 224),
'vgg16': (2, 3, 224, 224),
'vgg19': (2, 3, 224, 224),
'vgg16_bn': (2, 3, 224, 224),
'vgg19_bn': (2, 3, 224, 224),
'mobilenet_v2': (2, 3, 224, 224),
}
for model_name, input_shape in model_input_shapes.items():
with SummaryWriter(comment=model_name) as w:
model = getattr(torchvision.models, model_name)()
w.add_graph(model, torch.zeros(input_shape))
class TestTensorBoardFigure(BaseTestCase):
@skipIfNoMatplotlib
def test_figure(self):
writer = SummaryWriter()
figure, axes = plt.figure(), plt.gca()
circle1 = plt.Circle((0.2, 0.5), 0.2, color='r')
circle2 = plt.Circle((0.8, 0.5), 0.2, color='g')
axes.add_patch(circle1)
axes.add_patch(circle2)
plt.axis('scaled')
plt.tight_layout()
writer.add_figure("add_figure/figure", figure, 0, close=False)
self.assertTrue(plt.fignum_exists(figure.number))
writer.add_figure("add_figure/figure", figure, 1)
self.assertFalse(plt.fignum_exists(figure.number))
writer.close()
@skipIfNoMatplotlib
def test_figure_list(self):
writer = SummaryWriter()
figures = []
for i in range(5):
figure = plt.figure()
plt.plot([i * 1, i * 2, i * 3], label="Plot " + str(i))
plt.xlabel("X")
plt.xlabel("Y")
plt.legend()
plt.tight_layout()
figures.append(figure)
writer.add_figure("add_figure/figure_list", figures, 0, close=False)
self.assertTrue(all([plt.fignum_exists(figure.number) is True for figure in figures])) # noqa F812
writer.add_figure("add_figure/figure_list", figures, 1)
self.assertTrue(all([plt.fignum_exists(figure.number) is False for figure in figures])) # noqa F812
writer.close()
class TestTensorBoardNumpy(BaseTestCase):
def test_scalar(self):
res = make_np(1.1)
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
res = make_np(1 << 64 - 1) # uint64_max
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
res = make_np(np.float16(1.00000087))
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
res = make_np(np.float128(1.00008 + 9))
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
res = make_np(np.int64(100000000000))
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
@skipIfNoCaffe2
def test_caffe2_np(self):
workspace.FeedBlob("testBlob", tensor_N(shape=(1, 3, 64, 64)))
self.assertIsInstance(make_np('testBlob'), np.ndarray)
@skipIfNoCaffe2
def test_caffe2_np_expect_fail(self):
with self.assertRaises(RuntimeError):
res = make_np('This_blob_does_not_exist')
def test_pytorch_np_expect_fail(self):
with self.assertRaises(NotImplementedError):
res = make_np({'pytorch': 1.0})
@skipIfNoCaffe2
@unittest.skipIf(TEST_WITH_ASAN, "Caffe2 failure with ASAN")
def test_caffe2_simple_model(self):
model = ModelHelper(name="mnist")
# how come those inputs don't break the forward pass =.=a
workspace.FeedBlob("data", np.random.randn(1, 3, 64, 64).astype(np.float32))
workspace.FeedBlob("label", np.random.randn(1, 1000).astype(np.int))
with core.NameScope("conv1"):
conv1 = brew.conv(model, "data", 'conv1', dim_in=1, dim_out=20, kernel=5)
# Image size: 24 x 24 -> 12 x 12
pool1 = brew.max_pool(model, conv1, 'pool1', kernel=2, stride=2)
# Image size: 12 x 12 -> 8 x 8
conv2 = brew.conv(model, pool1, 'conv2', dim_in=20, dim_out=100, kernel=5)
# Image size: 8 x 8 -> 4 x 4
pool2 = brew.max_pool(model, conv2, 'pool2', kernel=2, stride=2)
with core.NameScope("classifier"):
# 50 * 4 * 4 stands for dim_out from previous layer multiplied by the image size
fc3 = brew.fc(model, pool2, 'fc3', dim_in=100 * 4 * 4, dim_out=500)
relu = brew.relu(model, fc3, fc3)
pred = brew.fc(model, relu, 'pred', 500, 10)
softmax = brew.softmax(model, pred, 'softmax')
xent = model.LabelCrossEntropy([softmax, "label"], 'xent')
# compute the expected loss
loss = model.AveragedLoss(xent, "loss")
model.net.RunAllOnMKL()
model.param_init_net.RunAllOnMKL()
model.AddGradientOperators([loss], skip=1)
blob_name_tracker = {}
graph = c2_graph.model_to_graph_def(
model,
blob_name_tracker=blob_name_tracker,
shapes={},
show_simplified=False,
)
compare_proto(graph, self)
@skipIfNoCaffe2
def test_caffe2_simple_cnnmodel(self):
model = cnn.CNNModelHelper("NCHW", name="overfeat")
workspace.FeedBlob("data", np.random.randn(1, 3, 64, 64).astype(np.float32))
workspace.FeedBlob("label", np.random.randn(1, 1000).astype(np.int))
with core.NameScope("conv1"):
conv1 = model.Conv("data", "conv1", 3, 96, 11, stride=4)
relu1 = model.Relu(conv1, conv1)
pool1 = model.MaxPool(relu1, "pool1", kernel=2, stride=2)
with core.NameScope("classifier"):
fc = model.FC(pool1, "fc", 4096, 1000)
pred = model.Softmax(fc, "pred")
xent = model.LabelCrossEntropy([pred, "label"], "xent")
loss = model.AveragedLoss(xent, "loss")
blob_name_tracker = {}
graph = c2_graph.model_to_graph_def(
model,
blob_name_tracker=blob_name_tracker,
shapes={},
show_simplified=False,
)
compare_proto(graph, self)
if __name__ == '__main__':
run_tests()