mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23858 Pull Request resolved: https://github.com/pytorch/pytorch/pull/23718 Changes: - Enable tests for quantization test files in `run_tests.py` - Remove `__future__` imports from `torch/nn/qat/modules/__init__.py`, since `unicode_literals` messes up imports on python2 because the elements in `__all__` will be Unicode and not string - Skip PostTrainingQuantTests if the build doesn't have FBGEMM (only a small subset of targets in tests) or if testing under UBSAN (the suppression file doesn't seem to work) Test Plan: Imported from OSS Reviewed By: ZolotukhinM Differential Revision: D16639467 Pulled By: jamesr66a fbshipit-source-id: 532766797c216976dd7e07d751f768ff8e0fc207
140 lines
4.9 KiB
Python
140 lines
4.9 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import torch
|
|
from torch.nn import Conv2d, BatchNorm2d, ReLU
|
|
from torch.nn._intrinsic.qat import ConvBn2d, ConvBnReLU2d
|
|
from torch.quantization.QConfig import default_qat_qconfig
|
|
from torch.nn import Parameter
|
|
from torch.utils.mkldnn import disable_mkldnn_conv
|
|
from common_quantization import no_deadline
|
|
from common_utils import TestCase, run_tests
|
|
from hypothesis import given
|
|
from hypothesis import strategies as st
|
|
from functools import reduce
|
|
|
|
|
|
class IntrinsicQATModuleTest(TestCase):
|
|
# NOTE: Tests in this class are decorated with no_deadline
|
|
# to prevent spurious failures due to cuda runtime initialization.
|
|
|
|
@no_deadline
|
|
@given(batch_size=st.integers(1, 3),
|
|
input_channels_per_group=st.sampled_from([2, 4, 5, 8, 16, 32]),
|
|
height=st.integers(10, 16),
|
|
width=st.integers(7, 14),
|
|
output_channels_per_group=st.sampled_from([2, 4, 5, 8, 16, 32]),
|
|
groups=st.integers(1, 3),
|
|
kernel_h=st.integers(1, 7),
|
|
kernel_w=st.integers(1, 7),
|
|
stride_h=st.integers(1, 2),
|
|
stride_w=st.integers(1, 2),
|
|
pad_h=st.integers(0, 2),
|
|
pad_w=st.integers(0, 2),
|
|
dilation=st.integers(1, 1),
|
|
padding_mode=st.sampled_from(['zeros', 'circular']),
|
|
use_relu=st.booleans(),
|
|
eps=st.sampled_from([1e-5, 1e-4, 1e-3, 0.01, 0.1]),
|
|
momentum=st.sampled_from([0.1, 0.2, 0.3]),
|
|
freeze_bn=st.booleans())
|
|
def test_conv_bn_relu(
|
|
self,
|
|
batch_size,
|
|
input_channels_per_group,
|
|
height,
|
|
width,
|
|
output_channels_per_group,
|
|
groups,
|
|
kernel_h,
|
|
kernel_w,
|
|
stride_h,
|
|
stride_w,
|
|
pad_h,
|
|
pad_w,
|
|
dilation,
|
|
padding_mode,
|
|
use_relu,
|
|
eps,
|
|
momentum,
|
|
freeze_bn
|
|
):
|
|
with disable_mkldnn_conv():
|
|
input_channels = input_channels_per_group * groups
|
|
output_channels = output_channels_per_group * groups
|
|
dilation_h = dilation_w = dilation
|
|
|
|
conv_op = Conv2d(
|
|
input_channels,
|
|
output_channels,
|
|
(kernel_h, kernel_w),
|
|
(stride_h, stride_w),
|
|
(pad_h, pad_w),
|
|
(dilation_h, dilation_w),
|
|
groups,
|
|
False, # No bias
|
|
padding_mode
|
|
).to(dtype=torch.float)
|
|
bn_op = BatchNorm2d(output_channels, eps, momentum).to(dtype=torch.float)
|
|
relu_op = ReLU()
|
|
|
|
cls = ConvBnReLU2d if use_relu else ConvBn2d
|
|
qat_op = cls(
|
|
input_channels,
|
|
output_channels,
|
|
(kernel_h, kernel_w),
|
|
(stride_h, stride_w),
|
|
(pad_h, pad_w),
|
|
(dilation_h, dilation_w),
|
|
groups,
|
|
padding_mode,
|
|
eps,
|
|
momentum,
|
|
freeze_bn,
|
|
default_qat_qconfig
|
|
).to(dtype=torch.float).disable_fake_quant()
|
|
|
|
# align inputs and internal parameters
|
|
input = torch.randn(batch_size, input_channels, height, width, dtype=torch.float)
|
|
input.requires_grad_()
|
|
conv_op.weight = Parameter(qat_op.weight)
|
|
bn_op.running_mean = qat_op.running_mean
|
|
bn_op.running_var = qat_op.running_var
|
|
bn_op.weight = qat_op.gamma
|
|
bn_op.bias = qat_op.beta
|
|
|
|
def compose(functions):
|
|
# functions are reversed for natural reading order
|
|
return reduce(lambda f, g: lambda x: f(g(x)), functions[::-1], lambda x: x)
|
|
|
|
if not use_relu:
|
|
def relu_op(x):
|
|
return x
|
|
|
|
if freeze_bn:
|
|
def ref_op(x):
|
|
x = conv_op(x)
|
|
x = (x - bn_op.running_mean.reshape([1, -1, 1, 1])) * \
|
|
(bn_op.weight / torch.sqrt(bn_op.running_var + bn_op.eps)) \
|
|
.reshape([1, -1, 1, 1]) + bn_op.bias.reshape([1, -1, 1, 1])
|
|
x = relu_op(x)
|
|
return x
|
|
else:
|
|
ref_op = compose([conv_op, bn_op, relu_op])
|
|
|
|
result_ref = ref_op(input)
|
|
result_actual = qat_op(input)
|
|
self.assertEqual(result_ref, result_actual)
|
|
|
|
# backward
|
|
dout = torch.randn(result_ref.size(), dtype=torch.float)
|
|
result_actual.backward(dout, retain_graph=True)
|
|
grad_ref = input.grad.cpu()
|
|
result_actual.backward(dout)
|
|
grad_actual = input.grad.cpu()
|
|
self.assertEqual(grad_ref, grad_actual)
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|