pytorch/test/cpp/jit/test_ivalue.h
Sebastian Messmer de85abf226 Allow default construction of Dict/List (#22084)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22084

For DictPtr/ListPtr, default construction was disallowed because it was ambigious if it's supposed to create an empty list or a nullptr.
But since we renamed them to Dict/List, we can now allow default construction without ambiguity.

Differential Revision: D15948098

fbshipit-source-id: 942a9235b51608d1870ee4a2f2f0a5d0d45ec6e6
2019-06-25 17:40:48 -07:00

65 lines
1.7 KiB
C++

#pragma once
#include <ATen/ATen.h>
#include "ATen/core/ivalue.h"
#include "test/cpp/jit/test_base.h"
#include "test/cpp/jit/test_utils.h"
namespace torch {
namespace jit {
namespace {
using Var = SymbolicVariable;
using namespace torch::autograd;
void testIValue() {
c10::List<int64_t> foo({3, 4, 5});
ASSERT_EQ(foo.use_count(), 1);
IValue bar{foo};
ASSERT_EQ(foo.use_count(), 2);
auto baz = bar;
ASSERT_EQ(foo.use_count(), 3);
auto foo2 = std::move(bar);
ASSERT_EQ(foo.use_count(), 3);
ASSERT_TRUE(foo2.isIntList());
ASSERT_TRUE(bar.isNone());
foo2 = IValue(4.0);
ASSERT_TRUE(foo2.isDouble());
ASSERT_EQ(foo2.toDouble(), 4.0);
ASSERT_EQ(foo.use_count(), 2);
ASSERT_TRUE(baz.toIntListRef().equals({3, 4, 5}));
auto move_it = std::move(baz).toIntList();
ASSERT_EQ(foo.use_count(), 2);
ASSERT_TRUE(baz.isNone());
IValue i(4);
ASSERT_TRUE(i.isInt());
ASSERT_EQ(i.toInt(), 4);
IValue dlist(c10::List<double>({3.5}));
ASSERT_TRUE(dlist.isDoubleList());
ASSERT_TRUE(dlist.toDoubleListRef()
.equals({3.5}));
std::move(dlist).toDoubleList();
ASSERT_TRUE(dlist.isNone());
dlist = IValue(c10::List<double>({3.4}));
ASSERT_TRUE(dlist.toDoubleListRef().equals({3.4}));
IValue the_list(ivalue::Tuple::create({IValue(3.4), IValue(4), IValue(foo)}));
ASSERT_EQ(foo.use_count(), 3);
ASSERT_TRUE(the_list.isTuple());
auto first = the_list.toTuple()->elements()[1];
ASSERT_EQ(first.toInt(), 4);
at::Tensor tv = at::rand({3, 4});
IValue ten(tv);
ASSERT_EQ(tv.use_count(), 2);
auto ten2 = ten;
ASSERT_EQ(tv.use_count(), 3);
ASSERT_TRUE(ten2.toTensor().equal(ten.toTensor()));
std::move(ten2).toTensor();
ASSERT_EQ(tv.use_count(), 2);
}
} // namespace
} // namespace jit
} // namespace torch