mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/18494 Today we have some C2 end2end test run requiring reading model data from external filesystem (for example, Gluster and AWS). This could be a source for flaky test when the external filesystems are not reachable during the tests. In this diff, we add try/catch logic around where we download models and open model files from external system. In case such attempts fails, we will catch the excption and let the unittest skip the current test instead of failure. I also refactor the code a little bit by removing some duplicated logic on downloading and build the c2 model data. It has been duplicated in two classes and a few functions... Reviewed By: yinghai Differential Revision: D14442241 fbshipit-source-id: da8bf56c8d096efa34ca2070de5cd10a18aad70c
283 lines
11 KiB
Python
283 lines
11 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.proto import caffe2_pb2
|
|
from caffe2.python import core, workspace
|
|
import onnx
|
|
import onnx.defs
|
|
from onnx.helper import make_node, make_graph, make_tensor, make_tensor_value_info, make_model
|
|
from onnx.backend.base import namedtupledict
|
|
from caffe2.python.models.download import ModelDownloader
|
|
import caffe2.python.onnx.backend as c2
|
|
from caffe2.python.onnx.workspace import Workspace
|
|
from caffe2.python.trt.transform import convert_onnx_model_to_trt_op, transform_caffe2_net
|
|
from caffe2.python.onnx.tests.test_utils import TestCase
|
|
import numpy as np
|
|
import os.path
|
|
import json
|
|
import time
|
|
import unittest
|
|
import tarfile
|
|
import tempfile
|
|
import shutil
|
|
from six.moves.urllib.request import urlretrieve
|
|
|
|
def _print_net(net):
|
|
for i in net.external_input:
|
|
print("Input: {}".format(i))
|
|
for i in net.external_output:
|
|
print("Output: {}".format(i))
|
|
for op in net.op:
|
|
print("Op {}".format(op.type))
|
|
for x in op.input:
|
|
print(" input: {}".format(x))
|
|
for y in op.output:
|
|
print(" output: {}".format(y))
|
|
|
|
|
|
def _base_url(opset_version):
|
|
return 'https://s3.amazonaws.com/download.onnx/models/opset_{}'.format(opset_version)
|
|
|
|
# TODO: This is copied from https://github.com/onnx/onnx/blob/master/onnx/backend/test/runner/__init__.py. Maybe we should
|
|
# expose a model retrival API from ONNX
|
|
def _download_onnx_model(model_name, opset_version):
|
|
onnx_home = os.path.expanduser(os.getenv('ONNX_HOME', os.path.join('~', '.onnx')))
|
|
models_dir = os.getenv('ONNX_MODELS',
|
|
os.path.join(onnx_home, 'models'))
|
|
model_dir = os.path.join(models_dir, model_name)
|
|
if not os.path.exists(os.path.join(model_dir, 'model.onnx')):
|
|
if os.path.exists(model_dir):
|
|
bi = 0
|
|
while True:
|
|
dest = '{}.old.{}'.format(model_dir, bi)
|
|
if os.path.exists(dest):
|
|
bi += 1
|
|
continue
|
|
shutil.move(model_dir, dest)
|
|
break
|
|
os.makedirs(model_dir)
|
|
|
|
# On Windows, NamedTemporaryFile can not be opened for a
|
|
# second time
|
|
url = '{}/{}.tar.gz'.format(_base_url(opset_version), model_name)
|
|
download_file = tempfile.NamedTemporaryFile(delete=False)
|
|
try:
|
|
download_file.close()
|
|
print('Start downloading model {} from {}'.format(
|
|
model_name, url))
|
|
urlretrieve(url, download_file.name)
|
|
print('Done')
|
|
with tarfile.open(download_file.name) as t:
|
|
t.extractall(models_dir)
|
|
except Exception as e:
|
|
print('Failed to prepare data for model {}: {}'.format(
|
|
model_name, e))
|
|
raise
|
|
finally:
|
|
os.remove(download_file.name)
|
|
return model_dir
|
|
|
|
class TensorRTOpTest(TestCase):
|
|
def setUp(self):
|
|
self.opset_version = onnx.defs.onnx_opset_version()
|
|
|
|
def _test_relu_graph(self, X, batch_size, trt_max_batch_size):
|
|
node_def = make_node("Relu", ["X"], ["Y"])
|
|
Y_c2 = c2.run_node(node_def, {"X": X})
|
|
graph_def = make_graph(
|
|
[node_def],
|
|
name="test",
|
|
inputs=[make_tensor_value_info("X", onnx.TensorProto.FLOAT, [batch_size, 1, 3, 2])],
|
|
outputs=[make_tensor_value_info("Y", onnx.TensorProto.FLOAT, [batch_size, 1, 3, 2])])
|
|
model_def = make_model(graph_def, producer_name='relu-test')
|
|
op_outputs = [x.name for x in model_def.graph.output]
|
|
op = convert_onnx_model_to_trt_op(model_def, max_batch_size=trt_max_batch_size)
|
|
device_option = core.DeviceOption(caffe2_pb2.CUDA, 0)
|
|
op.device_option.CopyFrom(device_option)
|
|
Y_trt = None
|
|
ws = Workspace()
|
|
with core.DeviceScope(device_option):
|
|
ws.FeedBlob("X", X)
|
|
ws.RunOperatorsOnce([op])
|
|
output_values = [ws.FetchBlob(name) for name in op_outputs]
|
|
Y_trt = namedtupledict('Outputs', op_outputs)(*output_values)
|
|
np.testing.assert_almost_equal(Y_c2, Y_trt)
|
|
|
|
|
|
@unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
|
|
def test_relu_graph_simple(self):
|
|
X = np.random.randn(1, 1, 3, 2).astype(np.float32)
|
|
self._test_relu_graph(X, 1, 50)
|
|
|
|
|
|
@unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
|
|
def test_relu_graph_big_batch(self):
|
|
X = np.random.randn(52, 1, 3, 2).astype(np.float32)
|
|
self._test_relu_graph(X, 52, 50)
|
|
|
|
def _test_onnx_importer(self, model_name, data_input_index, opset_version=onnx.defs.onnx_opset_version()):
|
|
model_dir = _download_onnx_model(model_name, opset_version)
|
|
model_def = onnx.load(os.path.join(model_dir, 'model.onnx'))
|
|
input_blob_dims = [int(x.dim_value) for x in model_def.graph.input[data_input_index].type.tensor_type.shape.dim]
|
|
op_inputs = [x.name for x in model_def.graph.input]
|
|
op_outputs = [x.name for x in model_def.graph.output]
|
|
print("{}".format(op_inputs))
|
|
data = np.random.randn(*input_blob_dims).astype(np.float32)
|
|
Y_c2 = c2.run_model(model_def, {op_inputs[data_input_index]: data})
|
|
op = convert_onnx_model_to_trt_op(model_def, verbosity=3)
|
|
device_option = core.DeviceOption(caffe2_pb2.CUDA, 0)
|
|
op.device_option.CopyFrom(device_option)
|
|
Y_trt = None
|
|
ws = Workspace()
|
|
with core.DeviceScope(device_option):
|
|
ws.FeedBlob(op_inputs[data_input_index], data)
|
|
if opset_version >= 5:
|
|
# Some newer models from ONNX Zoo come with pre-set "data_0" input
|
|
ws.FeedBlob("data_0", data)
|
|
ws.RunOperatorsOnce([op])
|
|
output_values = [ws.FetchBlob(name) for name in op_outputs]
|
|
Y_trt = namedtupledict('Outputs', op_outputs)(*output_values)
|
|
np.testing.assert_allclose(Y_c2, Y_trt, rtol=1e-3)
|
|
|
|
@unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
|
|
def test_resnet50(self):
|
|
self._test_onnx_importer('resnet50', 0, 9)
|
|
|
|
@unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
|
|
def test_bvlc_alexnet(self):
|
|
self._test_onnx_importer('bvlc_alexnet', 0, 9)
|
|
|
|
@unittest.skip("Until fixing Unsqueeze op")
|
|
def test_densenet121(self):
|
|
self._test_onnx_importer('densenet121', -1, 3)
|
|
|
|
@unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
|
|
def test_inception_v1(self):
|
|
self._test_onnx_importer('inception_v1', -3, 9)
|
|
|
|
@unittest.skip("Until fixing Unsqueeze op")
|
|
def test_inception_v2(self):
|
|
self._test_onnx_importer('inception_v2', 0, 9)
|
|
|
|
@unittest.skip('Need to revisit our ChannelShuffle exporter to avoid generating 5D tensor')
|
|
def test_shufflenet(self):
|
|
self._test_onnx_importer('shufflenet', 0)
|
|
|
|
@unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
|
|
def test_squeezenet(self):
|
|
self._test_onnx_importer('squeezenet', -1, 9)
|
|
|
|
@unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
|
|
def test_vgg16(self):
|
|
self._test_onnx_importer('vgg16', 0, 9)
|
|
|
|
@unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
|
|
def test_vgg19(self):
|
|
self._test_onnx_importer('vgg19', -2, 9)
|
|
|
|
|
|
class TensorRTTransformTest(TestCase):
|
|
def setUp(self):
|
|
self.model_downloader = ModelDownloader()
|
|
|
|
def _add_head_tail(self, pred_net, new_head, new_tail):
|
|
orig_head = pred_net.external_input[0]
|
|
orig_tail = pred_net.external_output[0]
|
|
|
|
# Add head
|
|
head = caffe2_pb2.OperatorDef()
|
|
head.type = "Copy"
|
|
head.input.append(new_head)
|
|
head.output.append(orig_head)
|
|
dummy = caffe2_pb2.NetDef()
|
|
dummy.op.extend(pred_net.op)
|
|
del pred_net.op[:]
|
|
pred_net.op.extend([head])
|
|
pred_net.op.extend(dummy.op)
|
|
pred_net.external_input[0] = new_head
|
|
|
|
# Add tail
|
|
tail = caffe2_pb2.OperatorDef()
|
|
tail.type = "Copy"
|
|
tail.input.append(orig_tail)
|
|
tail.output.append(new_tail)
|
|
pred_net.op.extend([tail])
|
|
pred_net.external_output[0] = new_tail
|
|
|
|
@unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
|
|
def test_resnet50_core(self):
|
|
N = 2
|
|
warmup = 20
|
|
repeat = 100
|
|
print("Batch size: {}, repeat inference {} times, warmup {} times".format(N, repeat, warmup))
|
|
init_net, pred_net, _ = self.model_downloader.get_c2_model('resnet50')
|
|
self._add_head_tail(pred_net, 'real_data', 'real_softmax')
|
|
input_blob_dims = (N, 3, 224, 224)
|
|
input_name = "real_data"
|
|
|
|
device_option = core.DeviceOption(caffe2_pb2.CUDA, 0)
|
|
init_net.device_option.CopyFrom(device_option)
|
|
pred_net.device_option.CopyFrom(device_option)
|
|
for op in pred_net.op:
|
|
op.device_option.CopyFrom(device_option)
|
|
op.engine = 'CUDNN'
|
|
net_outputs = pred_net.external_output
|
|
Y_c2 = None
|
|
data = np.random.randn(*input_blob_dims).astype(np.float32)
|
|
c2_time = 1
|
|
workspace.SwitchWorkspace("gpu_test", True)
|
|
with core.DeviceScope(device_option):
|
|
workspace.FeedBlob(input_name, data)
|
|
workspace.RunNetOnce(init_net)
|
|
workspace.CreateNet(pred_net)
|
|
for _ in range(warmup):
|
|
workspace.RunNet(pred_net.name)
|
|
start = time.time()
|
|
for _ in range(repeat):
|
|
workspace.RunNet(pred_net.name)
|
|
end = time.time()
|
|
c2_time = end - start
|
|
output_values = [workspace.FetchBlob(name) for name in net_outputs]
|
|
Y_c2 = namedtupledict('Outputs', net_outputs)(*output_values)
|
|
workspace.ResetWorkspace()
|
|
|
|
# Fill the workspace with the weights
|
|
with core.DeviceScope(device_option):
|
|
workspace.RunNetOnce(init_net)
|
|
|
|
# Cut the graph
|
|
start = time.time()
|
|
pred_net_cut = transform_caffe2_net(pred_net,
|
|
{input_name: input_blob_dims},
|
|
build_serializable_op=False)
|
|
del init_net, pred_net
|
|
pred_net_cut.device_option.CopyFrom(device_option)
|
|
for op in pred_net_cut.op:
|
|
op.device_option.CopyFrom(device_option)
|
|
#_print_net(pred_net_cut)
|
|
|
|
Y_trt = None
|
|
input_name = pred_net_cut.external_input[0]
|
|
print("C2 runtime: {}s".format(c2_time))
|
|
with core.DeviceScope(device_option):
|
|
workspace.FeedBlob(input_name, data)
|
|
workspace.CreateNet(pred_net_cut)
|
|
end = time.time()
|
|
print("Conversion time: {:.2f}s".format(end -start))
|
|
|
|
for _ in range(warmup):
|
|
workspace.RunNet(pred_net_cut.name)
|
|
start = time.time()
|
|
for _ in range(repeat):
|
|
workspace.RunNet(pred_net_cut.name)
|
|
end = time.time()
|
|
trt_time = end - start
|
|
print("TRT runtime: {}s, improvement: {}%".format(trt_time, (c2_time-trt_time)/c2_time*100))
|
|
output_values = [workspace.FetchBlob(name) for name in net_outputs]
|
|
Y_trt = namedtupledict('Outputs', net_outputs)(*output_values)
|
|
np.testing.assert_allclose(Y_c2, Y_trt, rtol=1e-3)
|
|
|
|
|