pytorch/benchmarks/fastrnns/cells.py
Natalia Gimelshein 3875e1ba45 try to make at::cat in mm_tree_reduction operate on contig tensors (#18816)
Summary:
Sometimes at::cat gets transposed inputs and goes on a slow path. Also, make jit_premul lstm benchmark add bias to the whole input tensor to avoid separate reduction kernels in the backward pass.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18816

Differential Revision: D15013576

Pulled By: wanchaol

fbshipit-source-id: bcfa1cf44180b11b05b0f55f034707012f66281a
2019-04-24 23:44:25 -07:00

120 lines
3.5 KiB
Python

import torch
def milstm_cell(x, hx, cx, w_ih, w_hh, alpha, beta_i, beta_h, bias):
Wx = x.mm(w_ih.t())
Uz = hx.mm(w_hh.t())
# Section 2.1 in https://arxiv.org/pdf/1606.06630.pdf
gates = (alpha * Wx * Uz + beta_i * Wx + beta_h * Uz + bias)
# Same as LSTMCell after this point
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
ingate = ingate.sigmoid()
forgetgate = forgetgate.sigmoid()
cellgate = cellgate.tanh()
outgate = outgate.sigmoid()
cy = (forgetgate * cx) + (ingate * cellgate)
hy = outgate * cy.tanh()
return hy, cy
def lstm_cell(input, hidden, w_ih, w_hh, b_ih, b_hh):
# type: (Tensor, Tuple[Tensor, Tensor], Tensor, Tensor, Tensor, Tensor) -> Tuple[Tensor, Tensor]
hx, cx = hidden
gates = torch.mm(input, w_ih.t()) + torch.mm(hx, w_hh.t()) + b_ih + b_hh
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
ingate = torch.sigmoid(ingate)
forgetgate = torch.sigmoid(forgetgate)
cellgate = torch.tanh(cellgate)
outgate = torch.sigmoid(outgate)
cy = (forgetgate * cx) + (ingate * cellgate)
hy = outgate * torch.tanh(cy)
return hy, cy
def flat_lstm_cell(input, hx, cx, w_ih, w_hh, b_ih, b_hh):
# type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor) -> Tuple[Tensor, Tensor]
gates = torch.mm(input, w_ih.t()) + torch.mm(hx, w_hh.t()) + b_ih + b_hh
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
ingate = torch.sigmoid(ingate)
forgetgate = torch.sigmoid(forgetgate)
cellgate = torch.tanh(cellgate)
outgate = torch.sigmoid(outgate)
cy = (forgetgate * cx) + (ingate * cellgate)
hy = outgate * torch.tanh(cy)
return hy, cy
def premul_lstm_cell(igates, hidden, w_hh, b_ih, b_hh):
# type: (Tensor, Tuple[Tensor, Tensor], Tensor, Tensor, Tensor) -> Tuple[Tensor, Tensor]
hx, cx = hidden
gates = igates + torch.mm(hx, w_hh.t()) + b_ih + b_hh
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
ingate = torch.sigmoid(ingate)
forgetgate = torch.sigmoid(forgetgate)
cellgate = torch.tanh(cellgate)
outgate = torch.sigmoid(outgate)
cy = (forgetgate * cx) + (ingate * cellgate)
hy = outgate * torch.tanh(cy)
return hy, cy
def premul_lstm_cell_no_bias(igates, hidden, w_hh, b_hh):
# type: (Tensor, Tuple[Tensor, Tensor], Tensor, Tensor) -> Tuple[Tensor, Tensor]
hx, cx = hidden
gates = igates + torch.mm(hx, w_hh.t()) + b_hh
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
ingate = torch.sigmoid(ingate)
forgetgate = torch.sigmoid(forgetgate)
cellgate = torch.tanh(cellgate)
outgate = torch.sigmoid(outgate)
cy = (forgetgate * cx) + (ingate * cellgate)
hy = outgate * torch.tanh(cy)
return hy, cy
def gru_cell(input, hidden, w_ih, w_hh, b_ih, b_hh):
gi = torch.mm(input, w_ih.t()) + b_ih
gh = torch.mm(hidden, w_hh.t()) + b_hh
i_r, i_i, i_n = gi.chunk(3, 1)
h_r, h_i, h_n = gh.chunk(3, 1)
resetgate = torch.sigmoid(i_r + h_r)
inputgate = torch.sigmoid(i_i + h_i)
newgate = torch.tanh(i_n + resetgate * h_n)
hy = newgate + inputgate * (hidden - newgate)
return hy
def rnn_relu_cell(input, hidden, w_ih, w_hh, b_ih, b_hh):
igates = torch.mm(input, w_ih.t()) + b_ih
hgates = torch.mm(hidden, w_hh.t()) + b_hh
return torch.relu(igates + hgates)
def rnn_tanh_cell(input, hidden, w_ih, w_hh, b_ih, b_hh):
igates = torch.mm(input, w_ih.t()) + b_ih
hgates = torch.mm(hidden, w_hh.t()) + b_hh
return torch.tanh(igates + hgates)