#include "test/cpp/jit/test_base.h" #include "test/cpp/jit/test_utils.h" #include "torch/csrc/jit/argument_spec.h" #include "torch/csrc/jit/autodiff.h" #include "torch/csrc/jit/passes/common_subexpression_elimination.h" #include "torch/csrc/jit/passes/constant_propagation.h" #include "torch/csrc/jit/passes/create_autodiff_subgraphs.h" #include "torch/csrc/jit/passes/dead_code_elimination.h" #include "torch/csrc/jit/passes/graph_fuser.h" #include "torch/csrc/jit/passes/lower_grad_of.h" #include "torch/csrc/jit/passes/requires_grad_analysis.h" #include "torch/csrc/jit/passes/shape_analysis.h" #include "torch/csrc/jit/passes/utils/subgraph_utils.h" #include "torch/csrc/jit/tracer.h" #include #include "torch/csrc/autograd/engine.h" #include "torch/csrc/autograd/generated/variable_factories.h" #include "torch/csrc/autograd/variable.h" namespace torch { namespace jit { using namespace torch::autograd; using var_meta_type = std::vector; using var_meta_list = std::vector; using test_fn_type = std::function; struct ADTestSpec { ADTestSpec(const char* name, var_meta_list input_meta, test_fn_type test_fn) : name(name), input_meta(input_meta), test_fn(test_fn) {} variable_list operator()(const variable_list& inputs) const { return test_fn(inputs); }; std::vector make_vars() const { std::vector out; for (const auto& m : input_meta) { out.push_back(torch::randn(m, at::requires_grad(true))); } return out; } const char* name; var_meta_list input_meta; test_fn_type test_fn; }; variable_list get_grad_outputs(const variable_list& vars) { return fmap(vars, [](const Variable& v) -> Variable { return at::randn(v.sizes(), v.options()); }); } std::shared_ptr trace( const ADTestSpec& test, const variable_list& vars_in) { Stack input_vars = fmap(vars_in); std::vector input_types; input_types.reserve(input_vars.size()); for (size_t i = 0; i < input_vars.size(); i++) { input_types.push_back(TensorType::get()); } auto input_typeptr = TupleType::create(std::move(input_types)); std::shared_ptr state; Stack trace_stack_in; std::tie(state, trace_stack_in) = tracer::enter(input_vars); variable_list trace_vars_in = fmap( trace_stack_in, [](const IValue& v) { return Variable(v.toTensor()); }); auto trace_vars_out = test(trace_vars_in); tracer::exit(fmap(trace_vars_out)); return state->graph; } variable_list grad( const variable_list& outputs, const variable_list& inputs, const variable_list& grad_outputs) { const auto get_edge = [](const Variable& v) { return v.gradient_edge(); }; auto& engine = torch::autograd::Engine::get_default_engine(); return engine.execute( fmap(outputs, get_edge), grad_outputs, true, false, fmap(inputs, get_edge)); } void testADFormulas() { const auto cast = [](const Variable& v) { return static_cast(v); }; using VL = variable_list; const var_meta_list binary_pointwise = {{2, 3, 4, 5}, {2, 3, 4, 5}}; const var_meta_list unary_pointwise = {{2, 3, 4, 5}}; const var_meta_list unary_pointwise_2d = {{2, 3}}; const std::vector ad_tests = { {"add", binary_pointwise, [](const VL& v) -> VL { return {v[0] + v[1]}; }}, {"sub", binary_pointwise, [](const VL& v) -> VL { return {v[0] - v[1]}; }}, {"mul", binary_pointwise, [](const VL& v) -> VL { return {v[0] * v[1]}; }}, {"sigmoid", unary_pointwise, [](const VL& v) -> VL { return {v[0].sigmoid()}; }}, {"tanh", unary_pointwise, [](const VL& v) -> VL { return {v[0].tanh()}; }}, {"t", unary_pointwise_2d, [](const VL& v) -> VL { return {v[0].t()}; }}, {"view", unary_pointwise_2d, [](const VL& v) -> VL { return {v[0].view({3, 2})}; }}, {"expand", {{2, 1}}, [](const VL& v) -> VL { return {v[0].expand({2, 3})}; }}, {"mm", {{10, 12}, {12, 15}}, [](const VL& v) -> VL { return {v[0].mm(v[1])}; }}, // TODO: enable once we'll be able to capture lists across // forward-backward //{"chunk", {{10, 12, 15}}, [](const VL& v) -> VL { return // fmap(v[0].chunk(4, 1)); }}, //{"chunk", {{10, 12, 15}}, [](const VL& v) -> VL { return // fmap(v[0].chunk(3, 2)); }}, //{"split", {{10, 12, 15}}, [](const VL& v) -> VL { return // fmap(v[0].split(4, 1)); }}, //{"split", {{10, 12, 15}}, [](const VL& v) -> VL { return // fmap(v[0].split(3, 2)); }}, }; for (const auto& test : ad_tests) { // Get reference values form autograd auto vars_in = test.make_vars(); auto vars_out = test(vars_in); auto var_grads_in = get_grad_outputs(vars_out); auto var_grads_out = grad(vars_out, vars_in, var_grads_in); // Trace and differentiate the op auto graph = trace(test, vars_in); EliminateDeadCode(graph); // Tracing of some ops depends on the DCE trick ConstantPropagation(graph); auto grad_spec = differentiate(graph); LowerGradOf(*grad_spec.df); // Get outputs from the interpreter auto tensors_in = fmap(vars_in, cast); auto tensor_grads_in = fmap(var_grads_in, cast); tensor_list tensors_out, tensor_grads_out; std::tie(tensors_out, tensor_grads_out) = runGradient(grad_spec, tensors_in, tensor_grads_in); // Compare results auto expected_tensors_out = fmap(vars_out, cast); auto expected_tensor_grads_out = fmap(var_grads_out, cast); assertAllClose(tensors_out, expected_tensors_out); assertAllClose(tensor_grads_out, expected_tensor_grads_out); } } void testDifferentiate() { // Note: can't use IRParser for this test due to issue #23989 auto graph = std::make_shared(); const auto type = TensorType::create(at::ScalarType::Float, at::kCPU, {2, 3, 4}, {12, 4, 1}); // Builds graph a * b * a + b auto* a = graph->addInput()->setType(type); auto* b = graph->addInput()->setType(type); auto* cOne = graph->insertConstant(1); auto* ab = graph->insertNode(graph->create(aten::mul, /*num_outputs =*/ 1)); ab->addInput(a); ab->addInput(b); auto* aba = graph->insertNode(graph->create(aten::mul, /*num_outputs =*/ 1)); aba->addInput(ab->output()); aba->addInput(a); auto* abaplusb = graph->insertNode(graph->create(aten::add, /*num_outputs =*/ 1)); abaplusb->addInput(aba->output()); abaplusb->addInput(b); abaplusb->addInput(cOne); graph->registerOutput(abaplusb->output()); auto grad_spec = differentiate(graph); std::vector expected_captured_inputs = {0, 1}; std::vector expected_captured_outputs = {1, 2, 3, 4, 5, 6, 7}; std::vector expected_input_vjps = {0, 1}; std::vector expected_output_vjps = {0, 1}; ASSERT_EQ(grad_spec.f_real_outputs, 1); ASSERT_EQ(grad_spec.df_input_captured_inputs, expected_captured_inputs); ASSERT_EQ(grad_spec.df_input_captured_outputs, expected_captured_outputs); ASSERT_EQ(grad_spec.df_input_vjps, expected_input_vjps); ASSERT_EQ(grad_spec.df_output_vjps, expected_output_vjps); testing::FileCheck() .check_count("aten::mul", 2) ->check("aten::size") ->check("aten::add") ->run(*grad_spec.f); testing::FileCheck() .check("prim::GradOf[name=\"aten::add\"]") ->check_count("prim::GradOf[name=\"aten::mul\"]", 2) ->check_count("AutogradAdd", 2) ->run(*grad_spec.df); } void testDifferentiateWithRequiresGrad() { const auto graph_string = R"IR( graph(%0 : Tensor, %1 : Tensor): %2 : int = prim::Constant[value=1]() %3 : Tensor = aten::mul(%1, %1) %4 : Tensor = aten::add(%3, %1, %2) %5 : Tensor = aten::add(%4, %0, %2) %6 : Tensor = aten::mul(%5, %0) %7 : Tensor = aten::add(%6, %1, %2) return (%4, %7))IR"; auto g = std::make_shared(); torch::jit::script::parseIR(graph_string, g.get()); auto a_var = autograd::make_variable( at::empty_strided(2, 2, at::CPU(at::kFloat).options()), true); auto b_var = autograd::make_variable( at::empty_strided(2, 2, at::CPU(at::kFloat).options()), false); ArgumentSpecCreator asc(*g); asc.specializeTypes(*g, asc.create(true, {a_var, b_var})); PropagateInputShapes(g); PropagateRequiresGrad(g); auto grad_spec = differentiate(g); std::vector expected_input_vjps = {1, 2}; // for e and %4 = (d + a) std::vector expected_output_vjps = {0}; // only a requires grad ASSERT_EQ(grad_spec.f_real_outputs, 2); ASSERT_EQ(grad_spec.df_input_captured_inputs, std::vector({0})); ASSERT_EQ( grad_spec.df_input_captured_outputs, std::vector({2, 3, 4, 5, 6})); ASSERT_EQ(grad_spec.df_input_vjps, expected_input_vjps); ASSERT_EQ(grad_spec.df_output_vjps, expected_output_vjps); testing::FileCheck() .check("aten::mul") ->check_count("aten::add", 2) ->check("aten::mul") ->check("aten::size") ->check("aten::add") ->run(*grad_spec.f); testing::FileCheck() .check_count("prim::GradOf[name=\"aten::mul\"]", 1, /*exactly*/ true) ->run(*grad_spec.df); } } // namespace jit } // namespace torch