import builtins import collections import copy import functools import inspect import itertools import math import operator import types import warnings from typing import Dict, Optional, Set import numpy import torch from torch.fx._symbolic_trace import is_fx_tracing from . import config from .external_utils import is_compiling from .utils import is_safe_constant """ A note on allowed functions: Dynamo consults this file to determine if a particular function/module is allowed to appear as a node in its fx output. If a function is disallowed, it may either be traced-through, or skipped. Trace-through means dynamo will continue to trace the interior code for the function/module rather than stopping at its boundary and recording it as a node in the fx graph. Whether tracing through or allowing, the functionality of the function/module is part of the dynamo graph. Caveat: if tracing through, any interior operation could trigger its own graph-break. Skips are determined by (torch/_dynamo/skipfiles.py) - see "a note on skipfiles" there. """ def make_function_id_set(lazy_initializer): """ Track a set of `id()`s of objects which are either allowed or not allowed to go into the generated FX graph. Use to test for torch.*, numpy.*, builtins.*, etc. Support user modification to permit customization of what can be added to the graph and what will cause a graph break. """ class FunctionIdSet: function_ids: Optional[Set[int]] = None function_names: Optional[Dict[int, str]] = None def __call__(self): if self.function_ids is None: value = lazy_initializer() if isinstance(value, dict): self.function_ids = set(value.keys()) self.function_names = value else: assert isinstance(value, set) self.function_ids = value return self.function_ids def get_name(self, idx: int, default: str): self() # lazy init return self.function_names.get(idx, default) def add(self, idx: int): self() # lazy init self.function_ids.add(idx) def remove(self, idx: int): if idx in self(): self.function_ids.remove(idx) def __contains__(self, idx: int): return idx in self() return FunctionIdSet() @make_function_id_set def _disallowed_function_ids(): remove = [ True, False, None, collections.OrderedDict, copy.copy, copy.deepcopy, inspect.signature, math.__package__, torch.__builtins__, torch.autocast_decrement_nesting, torch.autocast_increment_nesting, torch.autograd.grad, torch.clear_autocast_cache, torch.cuda.current_device, torch.cuda.amp.autocast_mode.autocast, torch.distributions.constraints.is_dependent, torch.distributions.normal.Normal, torch.inference_mode, torch.set_anomaly_enabled, torch.set_autocast_cache_enabled, torch.set_autocast_cpu_dtype, torch.set_autocast_cpu_enabled, torch.set_autocast_enabled, torch.set_autocast_gpu_dtype, torch.autograd.profiler.profile, warnings.warn, torch._C._dynamo.eval_frame.unsupported, ] # extract all dtypes from torch dtypes = [ obj for obj in torch.__dict__.values() if isinstance(obj, type(torch.float32)) ] remove += dtypes storage = [ obj for obj in torch.__dict__.values() if isinstance(obj, type(torch.FloatStorage)) ] remove += storage return {id(x) for x in remove} @make_function_id_set def _allowed_function_ids(): """ Walk torch.* and get the ids of all the stuff in it """ warnings.filterwarnings("ignore", category=UserWarning, module="torch.distributed") torch_object_ids = dict() def _is_allowed_module_prefix(obj): allowed_modules = ("torch", "math") # torch.nn.modules.rnn is disallowed because these modules internally # flatten their parameters. This flattening process will call # Tensor.set_ with a Storage, and Storages cannot be traced with # AOTAutograd; so we need to graph-break. To ensure this, we inline # these functions, rather than keep them opaque-ly in the graph. disallowed_modules = ( "torch.optim.", "torch.nn.modules.rnn.", "torch._dynamo.", "torch._C._dynamo.", "torch._inductor.", "torch._C.inductor.", "torch.fx.", "torch.distributed.fsdp.", ) allowed_modules_dot = tuple([x + "." for x in allowed_modules]) module = inspect.getmodule(obj) if module is None: return False mod_name = module.__name__ if any(mod_name.startswith(m) for m in disallowed_modules): return False return mod_name in allowed_modules or mod_name.startswith(allowed_modules_dot) def _find_torch_objects(module): if any( module.__name__.startswith(mod_name) for mod_name in config.allowed_functions_module_string_ignorelist ): return torch_object_ids[id(module)] = module.__name__ for name, obj in list(module.__dict__.items()): if id(obj) not in torch_object_ids: if isinstance(obj, types.ModuleType): if obj.__name__.startswith("torch.") and _is_allowed_module_prefix( obj ): torch_object_ids[id(obj)] = f"{module.__name__}.{name}" _find_torch_objects(obj) elif _is_allowed_module_prefix(obj): torch_object_ids[id(obj)] = f"{module.__name__}.{name}" elif inspect.getmodule(obj) is None and not is_safe_constant(obj): torch_object_ids[id(obj)] = f"{module.__name__}.{name}" _find_torch_objects(torch) _find_torch_objects(math) for idx in _disallowed_function_ids(): if idx in torch_object_ids: del torch_object_ids[idx] for extra in (is_fx_tracing, is_compiling): torch_object_ids[id(extra)] = f"{extra.__module__}.{extra.__name__}" return torch_object_ids @make_function_id_set def _builtin_function_ids(): rv = { id(v): f"builtins.{k}" for k, v in builtins.__dict__.items() if not k.startswith("_") and callable(v) } rv.update( { id(v): f"operator.{k}" for k, v in operator.__dict__.items() if not k.startswith("_") and callable(v) } ) rv.update( {id(v): f"functools.{v.__name__}" for v in (itertools.chain, itertools.islice)} ) rv[id(functools.reduce)] = "functools.reduce" return rv @make_function_id_set def _numpy_function_ids(): rv = dict() for mod in (numpy, numpy.random): rv.update( { id(v): f"{mod.__name__}.{k}" for k, v in mod.__dict__.items() if callable(v) and (getattr(v, "__module__", None) or mod.__name__) == mod.__name__ } ) return rv @make_function_id_set def _builtin_constant_ids(): """ Collects constant builtins by eliminating callable items. """ rv = { id(v): f"builtins.{k}" for k, v in builtins.__dict__.items() if not k.startswith("_") and not callable(v) } return rv def is_allowed(obj): """Is this safe to trace like torch.add ?""" # torch.ops is populated lazily so we don't necessarily have them in # _allowed_function_ids. Figure it out by testing the type instead # in those cases return id(obj) in _allowed_function_ids or isinstance( obj, (torch._ops.OpOverloadPacket, torch._ops.OpOverload, torch._ops._OpNamespace), ) def torch_get_name(obj, default): """Convert a torch.* funcion to a string""" return _allowed_function_ids.get_name(id(obj), default) def is_builtin_callable(obj): return id(obj) in _builtin_function_ids def is_builtin_constant(obj): return id(obj) in _builtin_constant_ids def is_numpy(obj): return isinstance(obj, numpy.ndarray) or id(obj) in _numpy_function_ids