from caffe2.python import schema from caffe2.python.layers.layers import ( IdList, ModelLayer, ) # Model layer for implementing probabilistic replacement of elements in # IdLists. Takes probabilities for train, eval and predict nets as input, as # well as the replacement value when dropout happens. For features we may have # available to us in train net but not in predict net, we'd set dropout # probability for predict net to be 1.0 and set the feature to the replacement # value given here. This way, the value is tied to the particular model and not # to any specific logic in feature processing in serving. # Consider the following example where X is the values in the IdList and Lengths # is the number of values corresponding to each example. # X: [1, 2, 3, 4, 5] # Lengths: [2, 3] # This IdList contains 2 items of lengths 2, 3. Let's assume we used a ratio of # 0.5 and ended up dropping out 2nd example, and used a replacement value of -1. # We will end up with the following IdList. # # Y: [1, 2, -1] # OutputLengths: [2, 1] # where the 2nd item values [3,4,5] were replaced with [-1] and the length got # set to 1. class SparseDropoutWithReplacement(ModelLayer): def __init__( self, model, input_record, dropout_prob_train, dropout_prob_eval, dropout_prob_predict, replacement_value, name='sparse_dropout', **kwargs): super(SparseDropoutWithReplacement, self).__init__(model, name, input_record, **kwargs) assert schema.equal_schemas(input_record, IdList), "Incorrect input type" self.dropout_prob_train = float(dropout_prob_train) self.dropout_prob_eval = float(dropout_prob_eval) self.dropout_prob_predict = float(dropout_prob_predict) self.replacement_value = int(replacement_value) assert (self.dropout_prob_train >= 0 and self.dropout_prob_train <= 1.0), \ "Expected 0 <= dropout_prob_train <= 1, but got %s" \ % self.dropout_prob_train assert (self.dropout_prob_eval >= 0 and self.dropout_prob_eval <= 1.0), \ "Expected 0 <= dropout_prob_eval <= 1, but got %s" \ % dropout_prob_eval assert (self.dropout_prob_predict >= 0 and self.dropout_prob_predict <= 1.0), \ "Expected 0 <= dropout_prob_predict <= 1, but got %s" \ % dropout_prob_predict assert(self.dropout_prob_train > 0 or self.dropout_prob_eval > 0 or self.dropout_prob_predict > 0), \ "Ratios all set to 0.0 for train, eval and predict" self.output_schema = schema.NewRecord(model.net, IdList) if input_record.lengths.metadata: self.output_schema.lengths.set_metadata( input_record.lengths.metadata) if input_record.items.metadata: self.output_schema.items.set_metadata( input_record.items.metadata) def _add_ops(self, net, ratio): input_values_blob = self.input_record.items() input_lengths_blob = self.input_record.lengths() output_lengths_blob = self.output_schema.lengths() output_values_blob = self.output_schema.items() net.SparseDropoutWithReplacement([input_values_blob, input_lengths_blob], [output_values_blob, output_lengths_blob], ratio=ratio, replacement_value=self.replacement_value) def add_train_ops(self, net): self._add_ops(net, self.dropout_prob_train) def add_eval_ops(self, net): self._add_ops(net, self.dropout_prob_eval) def add_ops(self, net): self._add_ops(net, self.dropout_prob_predict)