## @package conv # Module caffe2.python.layers.conv from caffe2.python import schema from caffe2.python.layers.layers import ( ModelLayer, ) import numpy as np class Conv(ModelLayer): """ Convolutional layer Input: - input_record: at least has the shape info of C (num_channels) - output_dim: number of convolutional filters - kernel_h, kernel_w: kernel size for h and w - stride_h, stride_w: stride for h and w - pad_b, pad_l, pad_r, pad_t: padding sizes, if stride == 1, 'None' value will do auto padding - order: either 'NHWC' or 'NCHW' """ def __init__(self, model, input_record, output_dim, kernel_h, kernel_w, stride_h, stride_w, pad_b=None, pad_l=None, pad_r=None, pad_t=None, order='NHWC', kernel_init=None, bias_init=None, kernel_optim=None, bias_optim=None, name='conv', **kwargs): super(Conv, self).__init__(model, name, input_record, **kwargs) assert isinstance(input_record, schema.Scalar), "Incorrect input type" # input num_channels (C) is needed input_dims = input_record.field_type().shape assert (kernel_h > 0 and isinstance(kernel_h, int)), ( "kernel_h should be positive integer") assert (kernel_w > 0 and isinstance(kernel_w, int)), ( "kernel_w should be positive integer") self.kernel_h = kernel_h self.kernel_w = kernel_w assert (stride_h > 0 and isinstance(stride_h, int)), ( "stride_h should be positive integer") assert (stride_w > 0 and isinstance(stride_w, int)), ( "stride_w should be positive integer") self.stride_h = stride_h self.stride_w = stride_w # output_dim calculation (http://cs231n.github.io/convolutional-networks/) # output_dim_w = (input_dim_w - kernel_w + pad_r + pad_l) / stride_w + 1 # so, do auto_padding requires # pad_r, pad_l = [(input_dim_w - 1) * stride_w - input_dim_w + kernel_w] / 2 # similair for pad_t and pad_b to auto pad kernel_h # here we only do auto padding for stride = 1 case if stride_h == 1: pad_t = int((kernel_h - 1) / 2) if pad_t is None else pad_t pad_b = int((kernel_h - 1) / 2) if pad_b is None else pad_b else: pad_t = 0 if pad_t is None else pad_t pad_b = 0 if pad_b is None else pad_b if stride_w == 1: pad_r = int((kernel_w - 1) / 2) if pad_r is None else pad_r pad_l = int((kernel_w - 1) / 2) if pad_l is None else pad_l else: pad_r = 0 if pad_r is None else pad_r pad_l = 0 if pad_l is None else pad_l assert (pad_t >= 0 and isinstance(pad_t, int)), "pad_t should be int >= 0" assert (pad_b >= 0 and isinstance(pad_b, int)), "pad_b should be int >= 0" assert (pad_r >= 0 and isinstance(pad_r, int)), "pad_r should be int >= 0" assert (pad_l >= 0 and isinstance(pad_l, int)), "pad_l should be int >= 0" self.pad_t = pad_t self.pad_b = pad_b self.pad_r = pad_r self.pad_l = pad_l assert order in ['NHWC', 'NCHW'], "order should either 'NHWC' or 'NCHW'" self.order = order if order == 'NHWC': input_c = input_dims[-1] kernel_shape = [output_dim, kernel_h, kernel_w, input_c] elif order == 'NCHW': input_c = input_dims[0] kernel_shape = [output_dim, input_c, kernel_h, kernel_w] assert input_c > 0, ( "Number of input channels in conv parameters should be positive") kernel_init = kernel_init if kernel_init else ( 'XavierFill', {} ) bias_init = bias_init if bias_init else ( 'ConstantFill', {'value': 0.0} ) self.kernel = self.create_param( param_name='conv_kernel', shape=kernel_shape, initializer=kernel_init, optimizer=kernel_optim, ) self.bias = self.create_param( param_name='conv_bias', shape=[output_dim], initializer=bias_init, optimizer=bias_optim, ) # the output_schema only has the num of output channels # output_h and output_w would be inferred internally self.output_schema = schema.Scalar( (np.float32, (output_dim,)), self.get_next_blob_reference('output') ) def add_ops(self, net): net.Conv( self.input_record.field_blobs() + [self.kernel, self.bias], self.output_schema.field_blobs(), kernel_h=self.kernel_h, kernel_w=self.kernel_w, stride_h=self.stride_h, stride_w=self.stride_w, pad_t=self.pad_t, pad_l=self.pad_l, pad_b=self.pad_b, pad_r=self.pad_r, order=self.order )