## @package nonlinearity # Module caffe2.python.helpers.nonlinearity from caffe2.python import core def prelu(model, blob_in, blob_out, num_channels=1, slope_init=None, **kwargs): """PRelu""" slope_init = ( slope_init if slope_init else ('ConstantFill', {'value': 0.25})) if model.init_params: slope = model.param_init_net.__getattr__(slope_init[0])( [], blob_out + '_slope', shape=[num_channels], **slope_init[1] ) else: slope = core.ScopedBlobReference( blob_out + '_slope', model.param_init_net) model.AddParameter(slope) return model.net.PRelu([blob_in, slope], [blob_out]) def relu(model, blob_in, blob_out, use_cudnn=False, order="NCHW", **kwargs): """Relu.""" if use_cudnn: kwargs['engine'] = 'CUDNN' return model.net.Relu(blob_in, blob_out, order=order, **kwargs) def tanh(model, blob_in, blob_out, use_cudnn=False, order="NCHW", **kwargs): """Tanh.""" if use_cudnn: kwargs['engine'] = 'CUDNN' return model.net.Tanh(blob_in, blob_out, order=order, **kwargs)