from __future__ import print_function import sys import os import math import shutil import random import tempfile import unittest import sys import traceback import torch import torch.cuda import warnings from torch.autograd import Variable from torch.utils.trainer import Trainer from torch.utils.trainer.plugins import * from torch.utils.trainer.plugins.plugin import Plugin from torch.utils.serialization import load_lua HAS_CUDA = torch.cuda.is_available() from common import TestCase try: import cffi from torch.utils.ffi import compile_extension HAS_CFFI = True except ImportError: HAS_CFFI = False class SimplePlugin(Plugin): def __init__(self, interval): super(SimplePlugin, self).__init__(interval) self.trainer = None self.num_iteration = 0 self.num_epoch = 0 self.num_batch = 0 self.num_update = 0 def register(self, trainer): self.trainer = trainer def iteration(self, *args): self.iteration_args = args self.num_iteration += 1 def epoch(self, *args): self.epoch_args = args self.num_epoch += 1 def batch(self, *args): self.batch_args = args self.num_batch += 1 def update(self, *args): self.update_args = args self.num_update += 1 class ModelMock(object): def __init__(self): self.num_calls = 0 self.output = Variable(torch.ones(1, 1), requires_grad=True) def __call__(self, i): self.num_calls += 1 return self.output * 2 class CriterionMock(object): def __init__(self): self.num_calls = 0 def __call__(self, out, target): self.num_calls += 1 return out class OptimizerMock(object): max_evals = 5 min_evals = 1 def __init__(self): self.num_steps = 0 self.num_evals = 0 def step(self, closure): for i in range(random.randint(self.min_evals, self.max_evals)): loss = closure() self.num_evals += 1 self.num_steps += 1 def zero_grad(self): pass class DatasetMock(object): def __iter__(self): for i in range(10): yield torch.randn(2, 10), torch.randperm(10)[:2] def __len__(self): return 10 class TestTrainer(TestCase): intervals = [ [(1, 'iteration')], [(1, 'epoch')], [(1, 'batch')], [(1, 'update')], [(5, 'iteration')], [(5, 'epoch')], [(5, 'batch')], [(5, 'update')], [(1, 'iteration'), (1, 'epoch')], [(5, 'update'), (1, 'iteration')], [(2, 'epoch'), (1, 'batch')], ] def setUp(self): self.optimizer = OptimizerMock() self.trainer = Trainer(ModelMock(), CriterionMock(), self.optimizer, DatasetMock()) self.num_epochs = 3 self.dataset_size = len(self.trainer.dataset) self.num_iters = self.num_epochs * self.dataset_size def test_register_plugin(self): for interval in self.intervals: simple_plugin = SimplePlugin(interval) self.trainer.register_plugin(simple_plugin) self.assertEqual(simple_plugin.trainer, self.trainer) def test_optimizer_step(self): self.trainer.run(epochs=1) self.assertEqual(self.trainer.optimizer.num_steps, 10) def test_plugin_interval(self): for interval in self.intervals: self.setUp() simple_plugin = SimplePlugin(interval) self.trainer.register_plugin(simple_plugin) self.trainer.run(epochs=self.num_epochs) units = { ('iteration', self.num_iters), ('epoch', self.num_epochs), ('batch', self.num_iters), ('update', self.num_iters) } for unit, num_triggers in units: call_every = None for i, i_unit in interval: if i_unit == unit: call_every = i break if call_every: expected_num_calls = math.floor(num_triggers / call_every) else: expected_num_calls = 0 num_calls = getattr(simple_plugin, 'num_' + unit) self.assertEqual(num_calls, expected_num_calls, 0) def test_model_called(self): self.trainer.run(epochs=self.num_epochs) num_model_calls = self.trainer.model.num_calls num_crit_calls = self.trainer.criterion.num_calls self.assertEqual(num_model_calls, num_crit_calls) for num_calls in [num_model_calls, num_crit_calls]: lower_bound = OptimizerMock.min_evals * self.num_iters upper_bound = OptimizerMock.max_evals * self.num_iters self.assertEqual(num_calls, self.trainer.optimizer.num_evals) self.assertLessEqual(lower_bound, num_calls) self.assertLessEqual(num_calls, upper_bound) def test_model_gradient(self): self.trainer.run(epochs=self.num_epochs) output_var = self.trainer.model.output expected_grad = torch.ones(1, 1) * 2 * self.optimizer.num_evals self.assertEqual(output_var.grad, expected_grad) test_dir = os.path.abspath(os.path.dirname(str(__file__))) class TestFFI(TestCase): def setUp(self): self.tmpdir = tempfile.mkdtemp() os.chdir(self.tmpdir) sys.path.append(self.tmpdir) def tearDown(self): shutil.rmtree(self.tmpdir) @unittest.skipIf(not HAS_CFFI, "ffi tests require cffi package") def test_cpu(self): compile_extension( name='test_extensions.cpulib', header=test_dir + '/ffi/src/cpu/lib.h', sources=[ test_dir + '/ffi/src/cpu/lib1.c', test_dir + '/ffi/src/cpu/lib2.c', ], verbose=False, ) from test_extensions import cpulib tensor = torch.ones(2, 2).float() cpulib.good_func(tensor, 2, 1.5) self.assertEqual(tensor, torch.ones(2, 2) * 2 + 1.5) new_tensor = cpulib.new_tensor(4) self.assertEqual(new_tensor, torch.ones(4, 4) * 4) f = cpulib.int_to_float(5) self.assertIs(type(f), float) self.assertRaises(TypeError, lambda: cpulib.good_func(tensor.double(), 2, 1.5)) self.assertRaises(torch.FatalError, lambda: cpulib.bad_func(tensor, 2, 1.5)) @unittest.skipIf(not HAS_CFFI or not HAS_CUDA, "ffi tests require cffi package") def test_gpu(self): compile_extension( name='gpulib', header=test_dir + '/ffi/src/cuda/cudalib.h', sources=[ test_dir + '/ffi/src/cuda/cudalib.c', ], with_cuda=True, verbose=False, ) import gpulib tensor = torch.ones(2, 2).float() gpulib.good_func(tensor, 2, 1.5) self.assertEqual(tensor, torch.ones(2, 2) * 2 + 1.5) ctensor = tensor.cuda().fill_(1) gpulib.cuda_func(ctensor, 2, 1.5) self.assertEqual(ctensor, torch.ones(2, 2) * 2 + 1.5) self.assertRaises(TypeError, lambda: gpulib.cuda_func(tensor, 2, 1.5)) self.assertRaises(TypeError, lambda: gpulib.cuda_func(ctensor.storage(), 2, 1.5)) class TestLuaReader(TestCase): @staticmethod def _module_test(name, test): def do_test(self): module = test['module'] input = test['input'] grad_output = test['grad_output'] if hasattr(self, '_transform_' + name): input = getattr(self, '_transform_' + name)(input) output = module.forward(input) module.zeroGradParameters() grad_input = module.backward(input, grad_output) self.assertEqual(output, test['output']) self.assertEqual(grad_input, test['grad_input']) if module.parameters() is not None: params, d_params = module.parameters() self.assertEqual(params, test['params']) self.assertEqual(d_params, test['d_params']) else: self.assertFalse('params' in test and test['params']) self.assertFalse('params' in test and test['d_params']) return do_test @staticmethod def _criterion_test(name, test): def do_test(self): module = test['module'] input = test['input'] if name == 'L1Cost': target = None else: target = test['target'] if hasattr(self, '_transform_' + name): input, target = getattr(self, '_transform_' + name)(input, target) output = module.forward(input, target) grad_input = module.backward(input, target) self.assertEqual(output, test['loss']) self.assertEqual(grad_input, test['grad_input']) return do_test @classmethod def _download_data(cls, test_file_path): if os.path.exists(test_file_path): return print('Downloading test file for TestLuaReader.') DATA_URL = 'https://s3.amazonaws.com/pytorch/legacy_modules.t7' urllib = cls._get_urllib('request') data = urllib.urlopen(DATA_URL, timeout=15).read() with open(test_file_path, 'wb') as f: f.write(data) @staticmethod def _get_urllib(submodule): if sys.version_info < (3,): import urllib2 return urllib2 else: import urllib.error import urllib.request return getattr(urllib, submodule) @classmethod def init(cls): data_dir = os.path.join(os.path.dirname(__file__), 'data') test_file_path = os.path.join(data_dir, 'legacy_modules.t7') urllib = cls._get_urllib('error') try: cls._download_data(test_file_path) except urllib.URLError as e: warnings.warn(("Couldn't download the test file for TestLuaReader! " "Tests will be incomplete!"), RuntimeWarning) return tests = load_lua(test_file_path) for name, test in tests['modules'].items(): test_name = 'test_' + name.replace('nn.', '') setattr(cls, test_name, cls._module_test(name, test)) for name, test in tests['criterions'].items(): test_name = 'test_' + name.replace('nn.', '') setattr(cls, test_name, cls._criterion_test(name, test)) def _transform_Index(self, input): return [input[0], input[1].sub(1)] def _transform_LookupTable(self, input): return input.sub(1) def _transform_MultiLabelMarginCriterion(self, input, target): return input, target.sub(1) def _transform_ClassNLLCriterion(self, input, target): return input, target.sub(1) def _transform_SpatialClassNLLCriterion(self, input, target): return input, target.sub(1) def _transform_ClassSimplexCriterion(self, input, target): return input, target.sub(1) def _transform_CrossEntropyCriterion(self, input, target): return input, target.sub(1) def _transform_ParallelCriterion(self, input, target): return input, [target[0].sub(1), target[1]] def _transform_MultiCriterion(self, input, target): return input, target.sub(1) def _transform_MultiMarginCriterion(self, input, target): return input, target.sub(1) TestLuaReader.init() if __name__ == '__main__': unittest.main()