# mypy: ignore-errors import inspect from typing import Dict, List import torch from .. import variables from ..exc import unimplemented from ..utils import istype from .base import VariableTracker from .constant import ConstantVariable class DistributedVariable(VariableTracker): """ The base distributed variable that encapsulates common methods for the distributed objects (i.e. ProcessGroup, DeviceMesh, etc.). Concrete distributed objects could inherit this class and add object specific logic. i.e. It provides the check on the distributed package existance and hold the tracking value for the corresponding distributed object. """ def __init__(self, value, **kwargs): super().__init__(**kwargs) if not DistributedVariable.is_available(): unimplemented("torch.distributed package is not available!") self.value = value def python_type(self): return type(self.value) @staticmethod def is_available(): # check if the distributed package is available or not return torch.distributed.is_available() def is_from_local(value): if not DistributedVariable.is_available(): return False from torch.distributed._tensor import DTensor return inspect.isfunction(value) and value is DTensor.from_local def is_constant_pg_functions(value): if not DistributedVariable.is_available(): return False from torch.distributed.distributed_c10d import ( _get_group_size_by_name, _get_group_tag, _rank_not_in_group, get_process_group_ranks, ) constant_processgroup_functions = [ _get_group_size_by_name, _get_group_tag, _rank_not_in_group, get_process_group_ranks, ] return inspect.isfunction(value) and value in constant_processgroup_functions class PlacementClassVariable(DistributedVariable): @staticmethod def is_placement_type(value): # we can't rely on importing/accessing torch distributed, it is not always built. if not DistributedVariable.is_available(): return False from torch.distributed._tensor.placement_types import Placement return type(value) is type and issubclass(value, Placement) def call_function( self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]" ) -> "VariableTracker": if ( inspect.getattr_static(self.value, "__new__", None) in (object.__new__,) and self.source ): # NOTE: we don't need to track mutations to the placement class as they # suppose to be immutable. new_obj = object.__new__(self.value) var = PlacementVariable(new_obj) if inspect.getattr_static(self.value, "__init__", None): var.call_method(tx, "__init__", args, kwargs) return var return super().call_function(tx, args, kwargs) class PlacementVariable(DistributedVariable): @staticmethod def is_placement(value): # we can't rely on importing/accessing torch distributed, it is not always built. if not DistributedVariable.is_available(): return False from torch.distributed._tensor.placement_types import Placement return isinstance(value, Placement) def as_python_constant(self): return self.value def var_getattr(self, tx, name: str) -> VariableTracker: if name == "dim": return ConstantVariable.create(self.value.dim) return super().var_getattr(tx, name) def call_method( self, tx, name, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": from . import ConstantVariable # Placement types dynamo tracking only allows following methods # and __setattr__ is for case like `Shard(dim)` and methods. # Methods in the list must satisfy: # 1. Input arguments are constants and do not need to be guarded on; # 2. Output is constant with respect to their inputs constant_fold_functions = [ "__init__", "__setattr__", "is_shard", "is_partial", "is_replicate", ] if name in constant_fold_functions: try: value_type = type(self.value) assert ( inspect.getattr_static(value_type, "__getattr__", None) is None ), "no custom getattr allowed!" method = inspect.getattr_static(value_type, name) except AttributeError: method = None if method is object.__init__: return ConstantVariable.create(None) args = [x.as_python_constant() for x in args] kwargs = {k: v.as_python_constant() for k, v in kwargs.items()} method(self.value, *args, **kwargs) return self return super().call_method(tx, name, args, kwargs) class DeviceMeshVariable(DistributedVariable): @staticmethod def is_device_mesh(value): # we can't rely on importing/accessing torch distributed, it is not always built. if not DistributedVariable.is_available(): return False from torch.distributed.device_mesh import DeviceMesh return istype(value, DeviceMesh) def as_python_constant(self): return self.value def var_getattr(self, tx, name: str) -> VariableTracker: if name == "ndim": return ConstantVariable.create(self.value.ndim) return super().var_getattr(tx, name) def call_method( self, tx, name, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": if name == "size": const_args = [x.as_python_constant() for x in args] const_kwargs = {k: v.as_python_constant() for k, v in kwargs.items()} return ConstantVariable.create(self.value.size(*const_args, **const_kwargs)) if name == "get_coordinate": return ConstantVariable.create(self.value.get_coordinate()) if name == "get_group": return ConstantVariable.create(self.value.get_group()) if name == "_get_or_create_default_group": return ProcessGroupVariable(self.value._get_or_create_default_group()) return super().call_method(tx, name, args, kwargs) class ProcessGroupVariable(DistributedVariable): """ We don't want a ProcessGroup object to end up in our output graph. But it's common for dynamo to intercept a PG that is then used to get info like rank() or world_size(), as well as passed to utility functions in distributed_c10d which desugar it into plain types like a ranklist and tag. For convenience and proper guarding, we construct a variable type. TODO: make it possible to use ProcessGroupVariable as input to simple functions like _expand_group without dynamo complaining about making a proxy for it. It is not a tensor-like type, and we don't want a proxy- but dynamo assumes torch library functions are dealing with tensor-like types and would have proxies for their args. TODO: should we make this inherit VT instead of UDOV? Do we want any of the default behaviors or just graph-break whenever one of our special cases is not hit? """ def as_python_constant(self): return self.value def call_method( self, tx, name, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": if name == "rank": return variables.ConstantVariable.create(self.value.rank()) if name == "size": return variables.ConstantVariable.create(self.value.size()) return super().call_method(tx, name, args, kwargs) def var_getattr(self, tx, name): if name in ["rank", "size"]: return variables.LambdaVariable( lambda *args, **kwargs: self.call_method(tx, name, args, kwargs) ) # TODO should this just raise unimplemented? return super().var_getattr(tx, name) @staticmethod def is_process_group(value): # we can't rely on importing/accessing torch distributed, it is not always built. if not DistributedVariable.is_available(): return False from torch._C._distributed_c10d import ProcessGroup from torch.testing._internal.distributed.fake_pg import FakeProcessGroup return istype(value, (ProcessGroup, FakeProcessGroup))