import collections.abc import functools import sys from typing import Any, Callable, Dict, List, Mapping, NamedTuple, Optional, Sequence, Tuple, Type, TypeVar, Union, cast import torch from torch import Tensor from ._core import _unravel_index __all__ = ["assert_equal", "assert_close"] # The UsageError should be raised in case the test function is not used correctly. With this the user is able to # differentiate between a test failure (there is a bug in the tested code) and a test error (there is a bug in the # test). If pytest is the test runner, we use the built-in UsageError instead our custom one. try: # The module 'pytest' will be imported if the 'pytest' runner is used. This will only give false-positives in case # a previously imported module already directly or indirectly imported 'pytest', but the test is run by another # runner such as 'unittest'. # 'mypy' is not able to handle this within a type annotation # (see https://mypy.readthedocs.io/en/latest/common_issues.html#variables-vs-type-aliases for details). In case # 'UsageError' is used in an annotation, add a 'type: ignore[valid-type]' comment. UsageError: Type[Exception] = sys.modules["pytest"].UsageError # type: ignore[attr-defined] except (KeyError, AttributeError): class UsageError(Exception): # type: ignore[no-redef] pass # This is copy-pasted from torch.testing._internal.common_utils.TestCase.dtype_precisions. With this we avoid a # dependency on torch.testing._internal at import. See # https://github.com/pytorch/pytorch/pull/54769#issuecomment-813174256 for details. # {dtype: (rtol, atol)} _DTYPE_PRECISIONS = { torch.float16: (0.001, 1e-5), torch.bfloat16: (0.016, 1e-5), torch.float32: (1.3e-6, 1e-5), torch.float64: (1e-7, 1e-7), torch.complex32: (0.001, 1e-5), torch.complex64: (1.3e-6, 1e-5), torch.complex128: (1e-7, 1e-7), } def _get_default_rtol_and_atol(actual: Tensor, expected: Tensor) -> Tuple[float, float]: dtype = actual.dtype if actual.dtype == expected.dtype else torch.promote_types(actual.dtype, expected.dtype) return _DTYPE_PRECISIONS.get(dtype, (0.0, 0.0)) def _check_supported_tensor( input: Tensor, ) -> Optional[UsageError]: # type: ignore[valid-type] """Checks if the tensors are supported by the current infrastructure. All checks are temporary and will be relaxed in the future. Returns: (Optional[UsageError]): If check did not pass. """ if input.dtype in (torch.complex32, torch.complex64, torch.complex128): return UsageError("Comparison for complex tensors is not supported yet.") if input.is_quantized: return UsageError("Comparison for quantized tensors is not supported yet.") if input.is_sparse: return UsageError("Comparison for sparse tensors is not supported yet.") return None def _check_attributes_equal( actual: Tensor, expected: Tensor, *, check_device: bool = True, check_dtype: bool = True, check_stride: bool = True, ) -> Optional[AssertionError]: """Checks if the attributes of two tensors match. Always checks the :attr:`~torch.Tensor.shape`. Checks for :attr:`~torch.Tensor.device`, :attr:`~torch.Tensor.dtype`, and :meth:`~torch.Tensor.stride` are optional and can be disabled. Args: actual (Tensor): Actual tensor. expected (Tensor): Expected tensor. check_device (bool): If ``True`` (default), asserts that both :attr:`actual` and :attr:`expected` are on the same :attr:`~torch.Tensor.device` memory. check_dtype (bool): If ``True`` (default), asserts that both :attr:`actual` and :attr:`expected` have the same :attr:`~torch.Tensor.dtype`. check_stride (bool): If ``True`` (default), asserts that both :attr:`actual` and :attr:`expected` have the same :meth:`~torch.Tensor.stride`. Returns: (Optional[AssertionError]): If checks did not pass. """ msg_fmtstr = "The values for attribute '{}' do not match: {} != {}." if actual.shape != expected.shape: return AssertionError(msg_fmtstr.format("shape", actual.shape, expected.shape)) if check_device and actual.device != expected.device: return AssertionError(msg_fmtstr.format("device", actual.device, expected.device)) if check_dtype and actual.dtype != expected.dtype: return AssertionError(msg_fmtstr.format("dtype", actual.dtype, expected.dtype)) if check_stride and actual.stride() != expected.stride(): return AssertionError(msg_fmtstr.format("stride()", actual.stride(), expected.stride())) return None def _equalize_attributes(actual: Tensor, expected: Tensor) -> Tuple[Tensor, Tensor]: """Equalizes some attributes of two tensors for value comparison. If :attr:`actual` and :attr:`expected` - are not onn the same memory :attr:`~torch.Tensor.device`, they are moved CPU memory, and - do not have the same :attr:`~torch.Tensor.dtype`, they are copied to the :class:`~torch.dtype` returned by :func:`torch.promote_types`. Args: actual (Tensor): Actual tensor. expected (Tensor): Expected tensor. Returns: Tuple(Tensor, Tensor): Equalized tensors. """ if actual.device != expected.device: actual = actual.cpu() expected = expected.cpu() if actual.dtype != expected.dtype: dtype = torch.promote_types(actual.dtype, expected.dtype) actual = actual.to(dtype) expected = expected.to(dtype) return actual, expected class _Trace(NamedTuple): total_elements: int total_mismatches: int mismatch_ratio: float max_abs_diff: Union[int, float] max_abs_diff_idx: Union[int, Tuple[int, ...]] max_rel_diff: Union[int, float] max_rel_diff_idx: Union[int, Tuple[int, ...]] def _trace_mismatches(actual: Tensor, expected: Tensor, mismatches: Tensor) -> _Trace: """Traces mismatches. Args: actual (Tensor): Actual tensor. expected (Tensor): Expected tensor. mismatches (Tensor): Boolean mask of the same shape as :attr:`actual` and :attr:`expected` that indicates the location of mismatches. Returns: (NamedTuple): Mismatch diagnostics with the following fields: - total_elements (int): Total number of values. - total_mismatches (int): Total number of mismatches. - mismatch_ratio (float): Quotient of total mismatches and total elements. - max_abs_diff (Union[int, float]): Greatest absolute difference of :attr:`actual` and :attr:`expected`. - max_abs_diff_idx (Union[int, Tuple[int, ...]]): Index of greatest absolute difference. - max_rel_diff (Union[int, float]): Greatest relative difference of :attr:`actual` and :attr:`expected`. - max_rel_diff_idx (Union[int, Tuple[int, ...]]): Index of greatest relative difference. The returned type of ``max_abs_diff`` and ``max_rel_diff`` depends on the :attr:`~torch.Tensor.dtype` of :attr:`actual` and :attr:`expected`. """ total_elements = mismatches.numel() total_mismatches = torch.sum(mismatches).item() mismatch_ratio = total_mismatches / total_elements dtype = torch.float64 if actual.dtype.is_floating_point else torch.int64 a_flat = actual.flatten().to(dtype) b_flat = expected.flatten().to(dtype) abs_diff = torch.abs(a_flat - b_flat) max_abs_diff, max_abs_diff_flat_idx = torch.max(abs_diff, 0) rel_diff = abs_diff / torch.abs(b_flat) max_rel_diff, max_rel_diff_flat_idx = torch.max(rel_diff, 0) return _Trace( total_elements=total_elements, total_mismatches=cast(int, total_mismatches), mismatch_ratio=mismatch_ratio, max_abs_diff=max_abs_diff.item(), max_abs_diff_idx=_unravel_index(max_abs_diff_flat_idx.item(), mismatches.shape), max_rel_diff=max_rel_diff.item(), max_rel_diff_idx=_unravel_index(max_rel_diff_flat_idx.item(), mismatches.shape), ) def _check_values_equal(actual: Tensor, expected: Tensor) -> Optional[AssertionError]: """Checks if the values of two tensors are bitwise equal. Args: actual (Tensor): Actual tensor. expected (Tensor): Expected tensor. Returns: (Optional[AssertionError]): If check did not pass. """ mismatches = torch.ne(actual, expected) if not torch.any(mismatches): return None trace = _trace_mismatches(actual, expected, mismatches) return AssertionError( f"Tensors are not equal!\n\n" f"Mismatched elements: {trace.total_mismatches} / {trace.total_elements} ({trace.mismatch_ratio:.1%})\n" f"Greatest absolute difference: {trace.max_abs_diff} at {trace.max_abs_diff_idx}\n" f"Greatest relative difference: {trace.max_rel_diff} at {trace.max_rel_diff_idx}" ) def _check_values_close( actual: Tensor, expected: Tensor, *, rtol: float, atol: float, equal_nan: bool, ) -> Optional[AssertionError]: """Checks if the values of two tensors are close up to a desired tolerance. Args: actual (Tensor): Actual tensor. expected (Tensor): Expected tensor. rtol (float): Relative tolerance. atol (float): Absolute tolerance. equal_nan (bool): If ``True``, two ``NaN`` values will be considered equal. Returns: (Optional[AssertionError]): If check did not pass. """ mismatches = ~torch.isclose(actual, expected, rtol=rtol, atol=atol, equal_nan=equal_nan) if not torch.any(mismatches): return None trace = _trace_mismatches(actual, expected, mismatches) return AssertionError( f"Tensors are not close!\n\n" f"Mismatched elements: {trace.total_mismatches} / {trace.total_elements} ({trace.mismatch_ratio:.1%})\n" f"Greatest absolute difference: {trace.max_abs_diff} at {trace.max_abs_diff_idx} (up to {atol} allowed)\n" f"Greatest relative difference: {trace.max_rel_diff} at {trace.max_rel_diff_idx} (up to {rtol} allowed)" ) def _check_tensors_equal( actual: Tensor, expected: Tensor, *, check_device: bool = True, check_dtype: bool = True, check_stride: bool = True, ) -> Optional[Exception]: """Checks that the values of two tensors are bitwise equal. Optionally, checks that some attributes of both tensors are equal. For a description of the parameters see :func:`assert_equal`. Returns: Optional[Exception]: If checks did not pass. """ exc: Optional[Exception] = _check_attributes_equal( actual, expected, check_device=check_device, check_dtype=check_dtype, check_stride=check_stride ) if exc: return exc actual, expected = _equalize_attributes(actual, expected) exc = _check_values_equal(actual, expected) if exc: return exc return None def _check_tensors_close( actual: Tensor, expected: Tensor, *, rtol: Optional[float] = None, atol: Optional[float] = None, equal_nan: bool = False, check_device: bool = True, check_dtype: bool = True, check_stride: bool = True, ) -> Optional[Exception]: r"""Checks that the values of two tensors are close. Closeness is defined by .. math:: \lvert a - b \rvert \le \texttt{atol} + \texttt{rtol} \cdot \lvert b \rvert If both tolerances, :attr:`rtol` and :attr:`rtol`, are ``0``, asserts that :attr:`actual` and :attr:`expected` are bitwise equal. Optionally, checks that some attributes of both tensors are equal. For a description of the parameters see :func:`assert_equal`. Returns: Optional[Exception]: If checks did not pass. """ if (rtol is None) ^ (atol is None): # We require both tolerance to be omitted or specified, because specifying only one might lead to surprising # results. Imagine setting atol=0.0 and the tensors still match because rtol>0.0. return UsageError( f"Both 'rtol' and 'atol' must be omitted or specified, but got rtol={rtol} and atol={atol} instead." ) elif rtol is None or atol is None: rtol, atol = _get_default_rtol_and_atol(actual, expected) exc: Optional[Exception] = _check_attributes_equal( actual, expected, check_device=check_device, check_dtype=check_dtype, check_stride=check_stride ) if exc: raise exc actual, expected = _equalize_attributes(actual, expected) if (rtol == 0.0) and (atol == 0.0): exc = _check_values_equal(actual, expected) else: exc = _check_values_close(actual, expected, rtol=rtol, atol=atol, equal_nan=equal_nan) if exc: return exc return None E = TypeVar("E", bound=Exception) def _amend_error_message(exc: E, msg_fmtstr: str) -> E: """Amends an exception message. Args: exc (E): Exception. msg_fmtstr: Format string for the amended message. Returns: (E): New exception with amended error message. """ return type(exc)(msg_fmtstr.format(str(exc))) _SEQUENCE_MSG_FMTSTR = "The failure occurred at index {} of the sequences." _MAPPING_MSG_FMTSTR = "The failure occurred for key '{}' of the mappings." def _check_inputs( actual: Union[Tensor, List[Tensor], Dict[Any, Tensor]], expected: Union[Tensor, List[Tensor], Dict[Any, Tensor]], check_tensors: Callable[[Tensor, Tensor], Optional[Exception]], ) -> Optional[Exception]: """Checks inputs. :class:`~collections.abc.Sequence`'s and :class:`~collections.abc.Mapping`'s are checked elementwise. Args: actual (Union[Tensor, List[Tensor], Dict[Any, Tensor]]): Actual input. expected (Union[Tensor, List[Tensor], Dict[Any, Tensor]]): Expected input. check_tensors (Callable[[Any, Any], Optional[Exception]]): Callable used to check if a tensor pair matches. In case it mismatches should return an :class:`Exception` with an expressive error message. Returns: (Optional[Exception]): Return value of :attr:`check_tensors`. """ if isinstance(actual, collections.abc.Sequence) and isinstance(expected, collections.abc.Sequence): for idx, (actual_t, expected_t) in enumerate(zip(actual, expected)): exc = check_tensors(actual_t, expected_t) if exc: return _amend_error_message(exc, f"{{}}\n\n{_SEQUENCE_MSG_FMTSTR.format(idx)}") else: return None elif isinstance(actual, collections.abc.Mapping) and isinstance(expected, collections.abc.Mapping): for key in sorted(actual.keys()): exc = check_tensors(actual[key], expected[key]) if exc: return _amend_error_message(exc, f"{{}}\n\n{_MAPPING_MSG_FMTSTR.format(key)}") else: return None else: return check_tensors(cast(Tensor, actual), cast(Tensor, expected)) class _ParsedInputs(NamedTuple): actual: Union[Tensor, List[Tensor], Dict[Any, Tensor]] expected: Union[Tensor, List[Tensor], Dict[Any, Tensor]] def _parse_inputs( actual: Any, expected: Any, ) -> Tuple[Optional[Exception], Optional[_ParsedInputs]]: """Parses inputs by constructing tensors from array-or-scalar-likes. :class:`~collections.abc.Sequence`'s or :class:`~collections.abc.Mapping`'s are parsed elementwise. Args: actual (Any): Actual input. expected (Any): Expected input. Returns: (Optional[Exception], Optional[_ParsedInputs]): The two elements are orthogonal, i.e. if the first ``is None`` the second will not and vice versa. Check :func:`_parse_array_or_scalar_like_pair`, :func:`_parse_sequences`, and :func:`_parse_mappings` for possible exceptions. """ if isinstance(actual, collections.abc.Sequence) and isinstance(expected, collections.abc.Sequence): return _parse_sequences(actual, expected) elif isinstance(actual, collections.abc.Mapping) and isinstance(expected, collections.abc.Mapping): return _parse_mappings(actual, expected) else: return _parse_array_or_scalar_like_pair(actual, expected) def _parse_array_or_scalar_like_pair(actual: Any, expected: Any) -> Tuple[Optional[Exception], Optional[_ParsedInputs]]: """Parses an scalar-or-array-like pair. Args: actual: Actual array-or-scalar-like. expected: Expected array-or-scalar-like. Returns: (Optional[Exception], Optional[_ParsedInputs]): The two elements are orthogonal, i.e. if the first ``is None`` the second will not and vice versa. Returns a :class:`UsageError` if :attr:`actual` and :attr:`expected` do not have the same type or no :class:`~torch.Tensor` can be constructed from them. """ exc: Optional[Exception] if type(actual) is not type(expected): exc = UsageError( f"Apart from a containers type equality is required, but got {type(actual)} and {type(expected)} instead." ) return exc, None tensors = [] for array_or_scalar_like in (actual, expected): try: tensor = torch.as_tensor(array_or_scalar_like) except Exception: exc = UsageError(f"No tensor can be constructed from type {type(array_or_scalar_like)}.") return exc, None exc = _check_supported_tensor(tensor) if exc: return exc, None tensors.append(tensor) actual_tensor, expected_tensor = tensors return None, _ParsedInputs(actual_tensor, expected_tensor) def _parse_sequences(actual: Sequence, expected: Sequence) -> Tuple[Optional[Exception], Optional[_ParsedInputs]]: """Parses sequences of scalar-or-array-like pairs. Regardless of the input types, the sequences are returned as :class:`list`. Args: actual: Actual sequence array-or-scalar-likes. expected: Expected sequence array-or-scalar-likes. Returns: (Optional[Exception], Optional[_ParsedInputs]): The two elements are orthogonal, i.e. if the first ``is None`` the second will not and vice versa. Returns a :class:`AssertionError` if the length of :attr:`actual` and :attr:`expected` does not match. Additionally, returns any exception from :func:`_parse_array_or_scalar_like_pair`. """ exc: Optional[Exception] actual_len = len(actual) expected_len = len(expected) if actual_len != expected_len: exc = AssertionError(f"The length of the sequences mismatch: {actual_len} != {expected_len}") return exc, None actual_lst = [] expected_lst = [] for idx in range(actual_len): exc, result = _parse_array_or_scalar_like_pair(actual[idx], expected[idx]) if exc: exc = _amend_error_message(exc, f"{{}}\n\n{_SEQUENCE_MSG_FMTSTR.format(idx)}") return exc, None result = cast(_ParsedInputs, result) actual_lst.append(cast(Tensor, result.actual)) expected_lst.append(cast(Tensor, result.expected)) return None, _ParsedInputs(actual_lst, expected_lst) def _parse_mappings(actual: Mapping, expected: Mapping) -> Tuple[Optional[Exception], Optional[_ParsedInputs]]: """Parses sequences of scalar-or-array-like pairs. Regardless of the input types, the sequences are returned as :class:`dict`. Args: actual: Actual mapping array-or-scalar-likes. expected: Expected mapping array-or-scalar-likes. Returns: (Optional[Exception], Optional[_ParsedInputs]): The two elements are orthogonal, i.e. if the first ``is None`` the second will not and vice versa. Returns a :class:`AssertionError` if the keys of :attr:`actual` and :attr:`expected` do not match. Additionally, returns any exception from :func:`_parse_array_or_scalar_like_pair`. """ exc: Optional[Exception] actual_keys = set(actual.keys()) expected_keys = set(expected.keys()) if actual_keys != expected_keys: missing_keys = expected_keys - actual_keys additional_keys = actual_keys - expected_keys exc = AssertionError( f"The keys of the mappings do not match:\n\n" f"Missing keys in the actual mapping: {sorted(missing_keys)}\n" f"Additional keys in the actual mapping: {sorted(additional_keys)}\n" ) return exc, None actual_dct = {} expected_dct = {} for key in sorted(actual_keys): exc, result = _parse_array_or_scalar_like_pair(actual[key], expected[key]) if exc: exc = _amend_error_message(exc, f"{{}}\n\n{_MAPPING_MSG_FMTSTR.format(key)}") return exc, None result = cast(_ParsedInputs, result) actual_dct[key] = cast(Tensor, result.actual) expected_dct[key] = cast(Tensor, result.expected) return None, _ParsedInputs(actual_dct, expected_dct) def assert_equal( actual: Any, expected: Any, *, check_device: bool = True, check_dtype: bool = True, check_stride: bool = True, ) -> None: """Asserts that the values of tensor pairs are bitwise equal. Optionally, checks that some attributes of tensor pairs are equal. Also supports array-or-scalar-like inputs from which a :class:`torch.Tensor` can be constructed with :func:`torch.as_tensor`. Still, requires type equality, i.e. comparing a :class:`torch.Tensor` and a :class:`numpy.ndarray` is not supported. In case both inputs are :class:`~collections.abc.Sequence`'s or :class:`~collections.abc.Mapping`'s the checks are performed elementwise. Args: actual (Any): Actual input. expected (Any): Expected input. check_device (bool): If ``True`` (default), asserts that each tensor pair is on the same :attr:`~torch.Tensor.device` memory. If this check is disabled **and** it is not on the same :attr:`~torch.Tensor.device` memory, it is moved CPU memory before the values are compared. check_dtype (bool): If ``True`` (default), asserts that each tensor pair has the same :attr:`~torch.Tensor.dtype`. If this check is disabled it does not have the same :attr:`~torch.Tensor.dtype`, it is copied to the :class:`~torch.dtype` returned by :func:`torch.promote_types` before the values are compared. check_stride (bool): If ``True`` (default), asserts that each tensor pair has the same stride. Raises: UsageError: If an array-or-scalar-like pair has different types. UsageError: If a :class:`torch.Tensor` can't be constructed from an array-or-scalar-like. UsageError: If any tensor is complex, quantized, or sparse. This is a temporary restriction and will be relaxed in the future. AssertionError: If the inputs are :class:`~collections.abc.Sequence`'s, but their length does not match. AssertionError: If the inputs are :class:`~collections.abc.Mapping`'s, but their set of keys do not match. AssertionError: If a tensor pair does not have the same :attr:`~torch.Tensor.shape`. AssertionError: If :attr:`check_device`, but a tensor pair is not on the same :attr:`~torch.Tensor.device` memory. AssertionError: If :attr:`check_dtype`, but a tensor pair does not have the same :attr:`~torch.Tensor.dtype`. AssertionError: If :attr:`check_stride`, but a tensor pair does not have the same stride. AssertionError: If the values of a tensor pair are not bitwise equal. .. seealso:: To assert that the values of a tensor pair are close but are not required to be bitwise equal, use :func:`assert_close` instead. """ exc, parse_result = _parse_inputs(actual, expected) if exc: raise exc actual, expected = cast(_ParsedInputs, parse_result) check_tensors = functools.partial( _check_tensors_equal, check_device=check_device, check_dtype=check_dtype, check_stride=check_stride, ) exc = _check_inputs(actual, expected, check_tensors) if exc: raise exc def assert_close( actual: Any, expected: Any, *, rtol: Optional[float] = None, atol: Optional[float] = None, equal_nan: bool = False, check_device: bool = True, check_dtype: bool = True, check_stride: bool = True, ) -> None: r"""Asserts that the values of tensor pairs are bitwise close. Closeness is defined by .. math:: \lvert a - b \rvert \le \texttt{atol} + \texttt{rtol} \cdot \lvert b \rvert Optionally, checks that some attributes of tensor pairs are equal. Also supports array-or-scalar-like inputs from which a :class:`torch.Tensor` can be constructed with :func:`torch.as_tensor`. Still, requires type equality, i.e. comparing a :class:`torch.Tensor` and a :class:`numpy.ndarray` is not supported. In case both inputs are :class:`~collections.abc.Sequence`'s or :class:`~collections.abc.Mapping`'s the checks are performed elementwise. Args: actual (Any): Actual input. expected (Any): Expected input. rtol (Optional[float]): Relative tolerance. If specified :attr:`atol` must also be specified. If omitted, default values based on the :attr:`~torch.Tensor.dtype` are selected with the below table. atol (Optional[float]): Absolute tolerance. If specified :attr:`rtol` must also be specified. If omitted, default values based on the :attr:`~torch.Tensor.dtype` are selected with the below table. equal_nan (bool): If ``True``, two ``NaN`` values will be considered equal. check_device (bool): If ``True`` (default), asserts that each tensor pair is on the same :attr:`~torch.Tensor.device` memory. If this check is disabled **and** it is not on the same :attr:`~torch.Tensor.device` memory, it is moved CPU memory before the values are compared. check_dtype (bool): If ``True`` (default), asserts that each tensor pair has the same :attr:`~torch.Tensor.dtype`. If this check is disabled it does not have the same :attr:`~torch.Tensor.dtype`, it is copied to the :class:`~torch.dtype` returned by :func:`torch.promote_types` before the values are compared. check_stride (bool): If ``True`` (default), asserts that each tensor pair has the same stride. Raises: UsageError: If an array-or-scalar-like pair has different types. UsageError: If a :class:`torch.Tensor` can't be constructed from an array-or-scalar-like. UsageError: If any tensor is complex, quantized, or sparse. This is a temporary restriction and will be relaxed in the future. UsageError: If only :attr:`rtol` or :attr:`atol` is specified. AssertionError: If the inputs are :class:`~collections.abc.Sequence`'s, but their length does not match. AssertionError: If the inputs are :class:`~collections.abc.Mapping`'s, but their set of keys do not match. AssertionError: If a tensor pair does not have the same :attr:`~torch.Tensor.shape`. AssertionError: If :attr:`check_device`, but a tensor pair is not on the same :attr:`~torch.Tensor.device` memory. AssertionError: If :attr:`check_dtype`, but a tensor pair does not have the same :attr:`~torch.Tensor.dtype`. AssertionError: If :attr:`check_stride`, but a tensor pair does not have the same stride. AssertionError: If the values of a tensor pair are not bitwise equal. The following table displays the default ``rtol``'s and ``atol``'s. Note that the :class:`~torch.dtype` refers to the promoted type in case :attr:`actual` and :attr:`expected` do not have the same :attr:`~torch.Tensor.dtype`. +===========================+============+==========+ | :class:`~torch.dtype` | ``rtol`` | ``atol`` | +===========================+============+==========+ | :attr:`~torch.float16` | ``1e-3`` | ``1e-5`` | +---------------------------+------------+----------+ | :attr:`~torch.bfloat16` | ``1.6e-2`` | ``1e-5`` | +---------------------------+------------+----------+ | :attr:`~torch.float32` | ``1.3e-6`` | ``1e-5`` | +---------------------------+------------+----------+ | :attr:`~torch.float64` | ``1e-7`` | ``1e-7`` | +---------------------------+------------+----------+ | :attr:`~torch.complex32` | ``1e-3`` | ``1e-5`` | +---------------------------+------------+----------+ | :attr:`~torch.complex64` | ``1.3e-6`` | ``1e-5`` | +---------------------------+------------+----------+ | :attr:`~torch.complex128` | ``1e-7`` | ``1e-7`` | +---------------------------+------------+----------+ | other | ``0.0`` | ``0.0`` | +---------------------------+------------+----------+ .. seealso:: To assert that the values of a tensor pair are bitwise equal, use :func:`assert_equal` instead. """ exc, parse_result = _parse_inputs(actual, expected) if exc: raise exc actual, expected = cast(_ParsedInputs, parse_result) check_tensors = functools.partial( _check_tensors_close, rtol=rtol, atol=atol, equal_nan=equal_nan, check_device=check_device, check_dtype=check_dtype, check_stride=check_stride, ) exc = _check_inputs(actual, expected, check_tensors) if exc: raise exc