import collections import contextlib import dataclasses import functools import itertools import logging import math import operator import os import shutil import sys import tempfile import textwrap import time from collections import defaultdict from io import StringIO from typing import Any, Dict, List, NamedTuple, Optional, Union from unittest import mock import sympy import torch from torch.autograd import DeviceType from torch.fx.immutable_collections import immutable_dict, immutable_list from . import config from .cuda_properties import get_device_capability log = logging.getLogger(__name__) VarRanges = Dict[sympy.Expr, sympy.Expr] try: from triton.testing import do_bench except ImportError: def do_bench(*args, **kwargs): raise NotImplementedError("requires Triton") @functools.lru_cache(None) def has_triton(): if not torch.cuda.is_available(): return False try: import triton return triton is not None and get_device_capability() >= (7, 0) except ImportError: return False @functools.lru_cache(None) def has_torchvision_roi_align(): try: from torchvision.ops import roi_align # noqa: F401 return roi_align is not None and hasattr( getattr(torch.ops, "torchvision", None), "roi_align" ) except ImportError: return False def conditional_product(*args): return functools.reduce(operator.mul, [x for x in args if x]) def sympy_product(it): return functools.reduce(operator.mul, it, sympy.Integer(1)) def sympy_dot(seq1, seq2): assert len(seq1) == len(seq2) return sympy.expand(sum(a * b for a, b in zip(seq1, seq2))) def unique(it): return {id(x): x for x in it}.values() def ceildiv(numer: int, denom: int): # TODO: There is a bug in a call to this function, to repro: # python benchmarks/dynamo/huggingface.py --inductor -d cuda --accuracy # --amp --only YituTechConvBert --dynamic-shapes assert isinstance(numer, int) and isinstance( denom, int ), f"{numer}: {type(numer)}, {denom}: {type(denom)}" return -(numer // -denom) def next_power_of_2(n): """Return the smallest power of 2 greater than or equal to n""" assert n <= 2**32, "32-bit only" n -= 1 n |= n >> 1 n |= n >> 2 n |= n >> 4 n |= n >> 8 n |= n >> 16 n += 1 return n def convert_shape_to_inductor(lst: List[Union[int, torch.SymInt]]) -> List[sympy.Expr]: """ Gets the shape and stride of a tensor. For non-symbolic tensors, this is trivial. But for symbolic tensors, we need to map from SymIntNode into sympy.Expr. """ return [ i.node.expr if isinstance(i, torch.SymInt) else sympy.Integer(i) for i in lst ] def convert_shape_to_symint( lst: List[Union[int, sympy.Expr]] ) -> List[Union[int, torch.SymInt]]: """ Takes a list of shapes from Inductor and converts them into symints (or just ints if all shapes are static). """ from .virtualized import V return [ i if isinstance(i, int) else int(i) if isinstance(i, sympy.Integer) else V.graph.sizevars.shape_env.create_symintnode(i, hint=None) for i in lst ] def gen_gm_and_inputs(target, args, kwargs): g = torch.fx.Graph() g_args = [] a_args = [] for n, arg in enumerate(args): if isinstance(arg, torch.Tensor): g_args.append(g.placeholder(f"arg{n}")) a_args.append(arg) else: g_args.append(arg) assert all(not isinstance(x, torch.Tensor) for x in kwargs.values()) node = g.call_function(target, tuple(g_args), kwargs) if ( len(target._schema.returns) == 1 and str(target._schema.returns[0].type) == "Tensor" ): node = (node,) g.output(node) gm = torch.fx.GraphModule({}, g) return gm, a_args def synchronize(): if torch.cuda.is_available(): torch.cuda.synchronize() def timed(model, example_inputs, times=1): synchronize() torch.manual_seed(1337) t0 = time.perf_counter() for _ in range(times): result = model(*example_inputs) synchronize() t1 = time.perf_counter() # GC the result after timing assert result is not None return t1 - t0 def print_performance(fn, args=(), times=10, repeat=10, baseline=1.0): timings = torch.tensor([timed(fn, args, times) for _ in range(repeat)]) took = torch.median(timings) print(f"{took/baseline:.6f}") return took immutable_dict.__hash__ = lambda self: hash(tuple(self.items())) immutable_list.__hash__ = lambda self: hash(tuple(self)) def freeze_inputs(f): """ Useful for wrapping lists in tuples for caching purposes """ def freeze_value(x): if isinstance(x, (immutable_dict, immutable_list)): return x if isinstance(x, list): return immutable_list(x) if isinstance(x, dict): return immutable_dict(x) return x @functools.wraps(f) def wrapped(*args): args = [freeze_value(x) for x in args] return f(*args) wrapped.cache_info = f.cache_info return wrapped def precompute_method(obj: Any, method: str): """Replace obj.method() with a new method that returns a precomputed constant.""" result = getattr(obj, method)() setattr(obj, method, lambda: result) def precompute_methods(obj: Any, methods: List[str]): """Replace methods with new methods that returns a precomputed constants.""" for method in methods: precompute_method(obj, method) def cmp(a, b): return int(a > b) - int(a < b) def pad_listlike(x, size): if len(x) == 1: return type(x)([x[0]]) * size else: return x def cache_on_self(fn): key = f"__{fn.__name__}_cache" @functools.wraps(fn) def wrapper(self): if not hasattr(self, key): setattr(self, key, fn(self)) return getattr(self, key) return wrapper def get_fused_kernel_name(node_schedule): all_origins = functools.reduce( operator.or_, [node.node.origins for node in node_schedule if hasattr(node, "node")], ) if config.triton.descriptive_names == "original_aten": # Bases the kernel name off of the top-level aten operator (i.e. pre-decompositions) sources = [ origin.meta["original_aten"]._overloadpacket.__name__ for origin in all_origins if origin.op == "call_function" and "original_aten" in origin.meta ] sources = sorted(set(sources)) elif config.triton.descriptive_names == "torch": # Bases the kernel name off of the top-level "torch" operator (i.e. post-dynamo graph) sources = [] for origin in all_origins: if origin.op == "call_function" and "source_fn" in origin.meta: if isinstance(origin.meta["source_fn"], str): sources.append(origin.meta["source_fn"]) else: sources.append(origin.meta["source_fn"].__name__) sources = sorted(set(sources)) elif config.triton.descriptive_names == "inductor_node": sources = [ origin.name for origin in all_origins if origin.op == "call_function" ] else: raise NotImplementedError sources = sources return "_".join(["fused"] + sources) def get_kernel_metadata(node_schedule): all_origins = functools.reduce( operator.or_, [node.node.origins for node in node_schedule if hasattr(node, "node")], ) inductor_nodes = [origin for origin in all_origins if origin.op == "call_function"] original_aten_dict = collections.defaultdict(list) for node in inductor_nodes: if "original_aten" in node.meta: original_aten_dict[str(node.meta["original_aten"]._overloadpacket)].append( node.name ) metadata = [ f"# Original ATen: {', '.join(sorted(original_aten_dict.keys()))}\n", ] for original_aten, nodes in sorted(original_aten_dict.items()): metadata.append(f"# {original_aten} => {', '.join(sorted(nodes))}") return "\n".join(metadata) def gather_origins(args, kwargs): import itertools from . import ir def is_unrealized_node(n): if isinstance(n, ir.TensorBox): return is_unrealized_node(n.data) if isinstance(n, ir.StorageBox): return is_unrealized_node(n.data) return isinstance(n, ir.IRNode) and isinstance(n, ir.Pointwise) kwarg_origins = [val.origins for val in kwargs.values() if is_unrealized_node(val)] arg_origins = [arg.origins for arg in args if is_unrealized_node(arg)] return set(itertools.chain(*arg_origins, *kwarg_origins)) def sympy_str(expr: sympy.Expr): """ Normal sympy str is very slow, this is a lot faster. The result are somewhat worse, as it doesn't do as much simplification. So don't use this for final codegen. """ if isinstance(expr, sympy.Symbol): return expr.name if isinstance(expr, sympy.Add): return " + ".join(map(sympy_str, expr.args)) if isinstance(expr, sympy.Mul): return " * ".join(map(sympy_str, expr.args)) from .ir import CleanDiv, FloorDiv, ModularIndexing if isinstance(expr, (ModularIndexing, CleanDiv, FloorDiv)): return f"{expr.func.__name__}({', '.join(map(sympy_str, expr.args))})" return str(expr) def sympy_symbol(name): # This should never be used for creating shape/stride symbols, as those # should all be allocated before Inductor. assert name[0] != "s" return sympy.Symbol(name, integer=True, positive=True) def sympy_subs(expr: sympy.Expr, replacements: Dict[Any, Any]): """ xreplace is faster than subs, but is way more picky """ def promote_strings(key): if isinstance(key, str): return sympy_symbol(key) return key return expr.xreplace( {promote_strings(k): promote_strings(v) for k, v in replacements.items()} ) def free_symbol_startswith(index: sympy.Expr, prefix: str): return any(v.name.startswith(prefix) for v in index.free_symbols) def free_symbol_has(index: sympy.Expr, pattern: str): return any(pattern in v.name for v in index.free_symbols) def has_incompatible_cudagraph_ops(gm): forbidden_set = { "aten._fused_moving_avg_obs_fq_helper.default", "aten._fused_moving_avg_obs_fq_helper_functional.default", "fbgemm.dense_to_jagged.default", "fbgemm.jagged_to_padded_dense.default", } if torch.are_deterministic_algorithms_enabled(): forbidden_set.update( { "aten.index_put.default", "aten.index_put_.default", "aten.scatter.src", "aten.scatter.reduce", "aten.scatter.value_reduce", "aten.scatter_add_", "aten.scatter_add.default", "aten.scatter_reduce.two", "aten.scatter_reduce_.two", "aten.scatter_reduce.two_out", } ) for node in gm.graph.nodes: if str(node.target) in forbidden_set: return True return False instance_descriptor = collections.namedtuple( "instance_descriptor", ["divisible_by_16", "equal_to_1"] ) @contextlib.contextmanager def fresh_inductor_cache(cache_entries=None): """ Contextmanager that provides a clean tmp cachedir for inductor. Optionally, pass a dict as 'cache_entries' to get a list of filenames and sizes generated with this cache instance. """ with tempfile.TemporaryDirectory() as inductor_cache_dir: with mock.patch.dict( os.environ, {"TORCHINDUCTOR_CACHE_DIR": inductor_cache_dir} ): triton_cache_dir = os.path.join(inductor_cache_dir, "triton") with mock.patch.dict(os.environ, {"TRITON_CACHE_DIR": triton_cache_dir}): yield if isinstance(cache_entries, dict): assert len(cache_entries) == 0, "expected empty cache_entries dict" if os.path.exists(triton_cache_dir): files = os.listdir(triton_cache_dir) cache_entries.update( { f: os.path.getsize(os.path.join(triton_cache_dir, f)) for f in files if ".lock" not in f } ) def argsort(seq): # preserve original order for equal strides getter = seq.__getitem__ a_r = range(len(seq)) return list(reversed(sorted(a_r, key=getter, reverse=True))) # noqa: C413 @functools.lru_cache(8) def get_dtype_size(dtype): return torch.empty((), dtype=dtype).element_size() class LineContext(NamedTuple): context: Any class IndentedBuffer: tabwidth = 4 def __init__(self, initial_indent=0): self._lines = [] self._indent = initial_indent def getvaluewithlinemap(self): buf = StringIO() p = 1 linemap = [] for line in self._lines: if isinstance(line, DeferredLineBase): line = line() if line is None: continue elif isinstance(line, LineContext): linemap.append((p, line.context)) continue assert isinstance(line, str) buf.write(line) buf.write("\n") p += 1 + line.count("\n") return buf.getvalue(), linemap def getvalue(self): v, _ = self.getvaluewithlinemap() return v def getrawvalue(self): buf = StringIO() for line in self._lines: if isinstance(line, DeferredLineBase): line = line() if line is None: continue elif isinstance(line, LineContext): continue assert isinstance(line, str) # backslash implies line continuation if line.endswith("\\"): buf.write(line[:-1]) else: buf.write(line) buf.write("\n") return buf.getvalue() def clear(self): self._lines.clear() def __bool__(self): return bool(self._lines) def prefix(self): return " " * (self._indent * self.tabwidth) def writeline(self, line): if isinstance(line, LineContext): self._lines.append(line) elif isinstance(line, DeferredLineBase): self._lines.append(line.with_prefix(self.prefix())) elif line.strip(): self._lines.append(f"{self.prefix()}{line}") else: self._lines.append("") def writelines(self, lines): for line in lines: self.writeline(line) def indent(self, offset=1): @contextlib.contextmanager def ctx(): self._indent += offset try: yield finally: self._indent -= offset return ctx() def splice(self, other_code, strip=False): if isinstance(other_code, IndentedBuffer): dedent = float("inf") for line in other_code._lines: if not isinstance(line, LineContext) and line: dedent = min(dedent, len(line) - len(line.lstrip())) if math.isinf(dedent): dedent = 0 for line in other_code._lines: if isinstance(line, LineContext): self._lines.append(line) else: IndentedBuffer.writeline(self, line[dedent:]) else: other_code = textwrap.dedent(other_code) if strip: other_code = other_code.lstrip() if not other_code: return other_code = other_code.rstrip() for line in other_code.split("\n"): self.writeline(line) class DeferredLineBase: """A line that can be 'unwritten' at a later time""" def __init__(self, line): if not line.strip(): line = "" self.line = line def __call__(self) -> Optional[str]: """Returns either self.line or None to indicate the line has been 'unwritten'""" raise NotImplementedError() def _new_line(self, line: str) -> "DeferredLineBase": """Returns a new deferred line with the same condition""" raise NotImplementedError() def with_prefix(self, prefix): return self._new_line(f"{prefix}{self.line}") def lstrip(self): return self._new_line(self.line.lstrip()) def __getitem__(self, index): return self._new_line(self.line[index]) def __bool__(self): return bool(self.line) def __len__(self): return len(self.line) @functools.lru_cache(None) def is_big_gpu(index): sms = torch.cuda.get_device_properties(index).multi_processor_count if sms < 80: # V100 log.warning("not enough SMs to use max_autotune_gemm mode") return False return True def use_triton_template(layout, *, enable_int32=False): layout_dtypes = (torch.float16, torch.bfloat16, torch.float32) if enable_int32: layout_dtypes = (torch.float16, torch.bfloat16, torch.float32, torch.int32) return ( ( config.max_autotune or config.max_autotune_gemm or config.search_autotune_cache ) and layout.device.type == "cuda" and layout.dtype in layout_dtypes and is_big_gpu(layout.device.index or 0) ) class DebugDirManager: counter = itertools.count(0) def __init__(self): self.id = next(DebugDirManager.counter) self.prev_debug_name = None def __enter__(self): self.prev_debug_name = torch._dynamo.config.debug_dir_root self.new_name = f"{self.prev_debug_name}_tmp_{self.id}" torch._dynamo.config.debug_dir_root = self.new_name def __exit__(self, *args): shutil.rmtree(self.new_name) torch._dynamo.config.debug_dir_root = self.prev_debug_name def run_and_get_code(fn, *args, **kwargs): from .graph import GraphLowering compile_to_module = GraphLowering.compile_to_module source_codes = [] def patched_compile_to_module(self): mod = compile_to_module(self) with open(mod.__file__, "r") as f: source_codes.append(f.read()) return mod with mock.patch.object( GraphLowering, "compile_to_module", patched_compile_to_module ): torch._dynamo.reset() fn(*args, **kwargs) return source_codes def run_and_get_triton_code(fn, *args, **kwargs): source_codes = run_and_get_code(fn, *args, **kwargs) assert ( len(source_codes) == 1 ), f"expected exactly one code output got {len(source_codes)}" return source_codes[0] def developer_warning(msg): """ Warnings that will be actionable for PyTorch developers, but not end users. Allows us to easily disable them in stable releases but keep them on for nightly builds. """ if config.developer_warnings: log.warning(msg) else: log.info(msg) def get_num_bytes(*args, num_in_out_args=0): """ Return the total number of bytes the arguments of tensor type takes. For in/out args, tensor sizes are counted twice: once for reading and once for writing. The first num_in_out_args arguments are in out tensors. """ return sum( arg.numel() * arg.element_size() * (1 + int(i < num_in_out_args)) for i, arg in enumerate(args) if isinstance(arg, torch.Tensor) ) def create_bandwidth_info_str(ms, num_gb, gb_per_s, prefix="", suffix=""): info_str = f"{prefix}{ms:.3f}ms \t{num_gb:.3f} GB \t {gb_per_s:7.2f}GB/s{suffix}" try: import colorama if ms > 0.012 and gb_per_s < 650: info_str = colorama.Fore.RED + info_str + colorama.Fore.RESET except ImportError: log.warning("Colorama is not installed. Install it if you want colored output") return info_str def get_benchmark_name(): """ An experimental API used only when config.benchmark_kernel is true. The benchmark name is only available at codegen time. So we can not directly call it in benchmark_all_kernels which is run after codegen. The function assumes the argument after --only is the benchmark name. It works for torchbench.py/hugginface.py/timm_models.py. But for ad-hoc scripts, this function may return None. There are 2 flavors of --only argument we need handle: 1. --only model_name 2. --only=model_name """ try: idx = sys.argv.index("--only") if ( idx + 1 < len(sys.argv) and len(sys.argv[idx + 1]) > 0 and sys.argv[idx + 1][0] != "-" ): return sys.argv[idx + 1] except ValueError: pass for arg in sys.argv: if arg.startswith("--only="): return arg[len("--only=") :] _kernel_category_choices = [ "pointwise", "reduction", "persistent_reduction", ] def get_kernel_category(kernel_mod): """ Given the module defining a triton kernel, return the category of the kernel. Cateogry can be one of: - pointwise - reduction - persistent_reduction Currently we simply decide the cateory depending on what decorator is imported by the kernel. """ choices = [ch for ch in _kernel_category_choices if ch in kernel_mod.__dict__] if len(choices) == 1: return choices[0] else: return "unknown" def get_kernel_category_by_source_code(src_code): """ Similar to get_kernel_category but use the source code. Call this API if we have not compile the src_code to module yet. """ choices = [ch for ch in _kernel_category_choices if f"@{ch}" in src_code] if len(choices) == 1: return choices[0] else: return "unknown" def benchmark_all_kernels(benchmark_name, benchmark_all_configs): """ An experimental API used only when config.benchmark_kernel is true. Run the kernel benchmarks for all the kernels cached in PyCodeCache. Used in the compiled modules. Put this method here rather than codegen it for convenience since its implementation does not change based on different graph modules being compiled. """ from torch._inductor.codecache import PyCodeCache def get_triton_kernel(mod): from torch._inductor.triton_heuristics import CachingAutotuner cand_list = [ v for k, v in mod.__dict__.items() if k.startswith("triton_") and isinstance(v, CachingAutotuner) ] assert len(cand_list) == 1 return cand_list[0] nfound = 0 for kernel_key, kernel_mod in PyCodeCache.cache.items(): if not hasattr(kernel_mod, "get_args") or not hasattr(kernel_mod, "call"): continue triton_kernel = get_triton_kernel(kernel_mod) kernel_category = get_kernel_category(kernel_mod) args = kernel_mod.get_args() num_in_out_ptrs = len( [ arg_name for arg_name in triton_kernel.fn.arg_names if arg_name.startswith("in_out_ptr") ] ) num_gb = get_num_bytes(*args, num_in_out_args=num_in_out_ptrs) / 1e9 def get_info_str(ms, n_regs, n_spills, shared, prefix=""): if not any(x is None for x in [n_regs, n_spills, shared]): kernel_detail_str = ( f" {n_regs:3} regs {n_spills:3} spills {shared:8} shared mem" ) else: kernel_detail_str = "" gb_per_s = num_gb / (ms / 1e3) return create_bandwidth_info_str( ms, num_gb, gb_per_s, prefix=prefix, suffix=kernel_detail_str ) bench_result = [] kernel_desc = ( f"{benchmark_name:20} {kernel_category[:3].upper()} {kernel_key[:10]}" ) if benchmark_all_configs: assert hasattr(kernel_mod, "benchmark_all_configs") bench_result = kernel_mod.benchmark_all_configs(args) print(kernel_desc) for launcher, ms in bench_result.items(): print( f" {get_info_str(ms, launcher.n_regs, launcher.n_spills, launcher.shared)} @ {launcher.config}" ) else: ms = do_bench(lambda: kernel_mod.call(args), rep=40, fast_flush=True)[0] assert ( len(triton_kernel.launchers) == 1 ), "Autotuner should have selected the best config" launcher = triton_kernel.launchers[0] print( get_info_str( ms, launcher.n_regs, launcher.n_spills, launcher.shared, prefix=f"{kernel_desc} ", ) ) nfound += 1 if nfound == 0: print( "No kernel with benchmark functionality found. Make sure you run inductor with config.benchmark_kernel being True" ) def is_ones(items): return all(x == 1 for x in items) def is_zeros(items): return all(x == 0 for x in items) def is_cpu_device(inputs): return all( item.device == torch.device("cpu") for item in inputs if isinstance(item, torch.Tensor) ) @contextlib.contextmanager def maybe_profile(should_profile, *args, **kwargs): if should_profile: with torch.profiler.profile(*args, **kwargs) as p: yield p else: yield @dataclasses.dataclass class ProfileEvent: category: str key: str self_cuda_time_ms: float # the benchmark is run multiple times and we average the count across all the # runs. It should be an integer but define a float just in case. count: float def parse_profile_event_list(benchmark_name, event_list, wall_time_ms, nruns): def get_self_cuda_time(ev): """ ev.self_cuda_time_total is in microsecond. Convert to millisecond. """ return ev.self_cuda_time_total / 1000 / nruns all_events = defaultdict(list) def add_event(ev, category): profile_ev = ProfileEvent( category=category, key=ev.key, self_cuda_time_ms=get_self_cuda_time(ev), count=ev.count / nruns, # average across all runs ) all_events[category].append(profile_ev) for ev in event_list: assert not ev.is_legacy, "Don't support the legacy profiler" if ev.device_type == DeviceType.CPU: # ignore the event on CPU side continue category = "unknown" if ev.key.startswith("triton_"): if ev.key.startswith("triton_poi"): category = "triton_pointwise" elif ev.key.startswith("triton_red"): category = "triton_reduction" elif ev.key.startswith("triton_per"): category = "triton_persistent_reduction" else: category = "triton_unknown" add_event(ev, category) def report_category(category, profile_events): from tabulate import tabulate profile_events.sort(key=lambda ev: ev.self_cuda_time_ms, reverse=True) rows = [] total_time = 0.0 print(f"\n == {category} category kernels == ") for ev in profile_events: total_time += ev.self_cuda_time_ms percent = f"{ev.self_cuda_time_ms / wall_time_ms * 100:.2f}%" rows.append([ev.key[:120], ev.self_cuda_time_ms, ev.count, percent]) rows.append( ["Total", total_time, "", f"{total_time / wall_time_ms * 100:.2f}%"] ) print( tabulate( rows, headers=["Kernel", "Self CUDA TIME (ms)", "Count", "Percent"] ) ) return total_time def report(): category_list = [ "triton_pointwise", "triton_reduction", "triton_persistent_reduction", "triton_unknown", "unknown", ] assert set(all_events.keys()).issubset( set(category_list) ), f"{list(all_events.keys())}" per_category_wall_time = {} total_cuda_ms = 0.0 for category in category_list: if category in all_events: _time = report_category(category, all_events[category]) per_category_wall_time[category] = _time total_cuda_ms += _time gpu_busy_percent = f"{total_cuda_ms / wall_time_ms * 100:.2f}%" print(f"\nPercent of time when GPU is busy: {gpu_busy_percent}") print(f"Total wall time {wall_time_ms:.3f} ms") # output such a line so we can gather such line from all compiled modules from all # benchmarks and tabulate it! # Columns: benchmark_name, pointwise_percent, reduction_percent, persistent_reduction_percent, # unknown_category_percent, GPU_busy_percent, wall_time_ms tabulate_line = f"Output for tabulate: {benchmark_name}" for category in category_list: percent = ( f"{per_category_wall_time.get(category, 0.0) / wall_time_ms * 100:.2f}%" ) tabulate_line += f", {percent}" tabulate_line += f", {gpu_busy_percent}, {wall_time_ms:.3f}ms" print(tabulate_line) report() def compiled_module_main(benchmark_name, benchmark_compiled_module_fn): """ This is the function called in __main__ block of a compiled module. """ import argparse parser = argparse.ArgumentParser() parser.add_argument( "--benchmark-kernels", "-k", action="store_true", help="Whether to benchmark each individual kernels", ) parser.add_argument( "--benchmark-all-configs", "-c", action="store_true", help="Whether to benchmark each individual config for a kernel", ) parser.add_argument( "--profile", "-p", action="store_true", help="Whether to profile the compiled module", ) args = parser.parse_args() if args.benchmark_kernels: benchmark_all_kernels(benchmark_name, args.benchmark_all_configs) else: times = 10 repeat = 10 wall_time_ms = ( benchmark_compiled_module_fn(times=times, repeat=repeat) / times * 1000 ) if not args.profile: return with torch.profiler.profile(record_shapes=True) as p: benchmark_compiled_module_fn(times=times, repeat=repeat) path = f"{tempfile.gettempdir()}/compiled_module_profile.json" p.export_chrome_trace(path) print(f"Profiling result for a compiled module of benchmark {benchmark_name}:") print(f"Chrome trace for the profile is written to {path}") event_list = p.key_averages(group_by_input_shape=True) print(event_list.table(sort_by="self_cuda_time_total", row_limit=10)) parse_profile_event_list( benchmark_name, event_list, wall_time_ms, times * repeat )