from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import OrderedDict import logging from caffe2.python import model_helper, dyndep, scope, workspace, core from caffe2.proto import caffe2_pb2 dyndep.InitOpsLibrary("@/caffe2/caffe2/contrib/nccl:nccl_ops") log = logging.getLogger("data_parallel_model") log.setLevel(logging.INFO) def Parallelize_GPU( model_helper_obj, input_builder_fun, forward_pass_builder_fun, param_update_builder_fun, devices=range(0, workspace.NumCudaDevices()), rendezvous=None, net_type='dag', ): ''' Function to create a model that can run on many GPUs. model_helper_obj: an object of ModelHelperBase, such as CNNModelHelper input_builder_fun: Function that adds the input operators Note: Remember to instantiate reader outside of this function so all GPUs share same reader object. Signature: input_builder_fun(model) forward_pass_builder_fun: Function to add the operators to the model. Must return list of loss-blob references that are used to build the gradient. Signature: forward_pass_builder_fun(model) param_update_builder_fun: Function that adds operators that are run after gradient update, such as updating the weights and weight decaying. Function is also passed the learning rate scaling factor. You should multiple the learning rate by the factor to maintain invariant of same results with same total batch size, regardless of number of gpus. Signature: param_update_builder_fun(model, lr_scale) devices: List of GPU ids, such as [0, 1, 2, 3], rendezvous: used for rendezvous in distributed computation, if None then only one node is used. To create rendezvous, use . net_type: Network type ''' log.info("Parallelizing model for devices: {}".format(devices)) extra_workers = 8 if rendezvous is not None else 0 # best-guess model_helper_obj.net.Proto().num_workers = len(devices) * 2 + extra_workers model_helper_obj.net.Proto().type = net_type # Store some information in the model -- a bit ugly model_helper_obj._devices = devices model_helper_obj._rendezvous = rendezvous model_helper_obj._grad_names = [] assert isinstance(model_helper_obj, model_helper.ModelHelperBase) assert model_helper_obj.params == [], "Model needs to be empty" # Add input and model log.info("Create input and model training operators") losses_by_gpu = {} for device in devices: device_opt = core.DeviceOption(caffe2_pb2.CUDA, device) with core.DeviceScope(device_opt): with core.NameScope("gpu_{}".format(device)): log.info("Model for GPU: {}".format(device)) input_builder_fun(model_helper_obj) losses = forward_pass_builder_fun(model_helper_obj) assert isinstance(losses, list), \ 'Model builder function must return a list of loss blobs' for loss in losses: assert isinstance(loss, core.BlobReference), \ 'Model builder func must return a list of loss blobs' losses_by_gpu[device] = losses # Create parameter map model_helper_obj._device_grouped_blobs =\ _GroupByDevice(devices, model_helper_obj.params) # computed params computed_params_grouped =\ _GroupByDevice(devices, model_helper_obj.computed_params) model_helper_obj._device_grouped_blobs.update(computed_params_grouped) model_helper_obj._param_names =\ model_helper_obj._device_grouped_blobs.keys() model_helper_obj._computed_param_names = computed_params_grouped.keys() if (param_update_builder_fun is None): log.info("Parameter update function not defined --> only forward") return log.info("Adding gradient operators") _AddGradientOperators(devices, model_helper_obj, losses_by_gpu) # Group gradients by device and register to blob lookup param_to_grad = model_helper_obj.param_to_grad grads_ordered = [param_to_grad[p] for p in model_helper_obj.params if p in param_to_grad] gradients_grouped = _GroupByDevice( devices, grads_ordered, ) model_helper_obj._device_grouped_blobs.update(gradients_grouped) model_helper_obj._grad_names = gradients_grouped.keys() log.info("Add gradient all-reduces for SyncSGD") _AllReduceComputedParams(devices, model_helper_obj, rendezvous) _AllReduceGradients( devices, model_helper_obj, rendezvous ) log.info("Post-iteration operators for updating params") num_shards = 1 if rendezvous is None else rendezvous['num_shards'] lr_scale = 1.0 / (len(devices) * num_shards) for device in devices: device_opt = core.DeviceOption(caffe2_pb2.CUDA, device) with core.DeviceScope(device_opt): with core.NameScope("gpu_{}".format(device)): param_update_builder_fun(model_helper_obj, lr_scale) _AnalyzeOperators(model_helper_obj) # Add initial parameter syncs log.info("Add initial parameter sync") if (rendezvous is not None): _AddDistributedParameterSync( devices, model_helper_obj, model_helper_obj.param_init_net, model_helper_obj.param_init_net, rendezvous, ) _SyncParams(devices, model_helper_obj, model_helper_obj.param_init_net) def _AddGradientOperators(devices, model, losses_by_gpu): def create_grad(lossp): return model.ConstantFill(lossp, str(lossp) + "_grad", value=1.0) loss_grad = {} # Explicitly need to create gradients on each GPU for gpu_id in devices: device = core.DeviceOption(caffe2_pb2.CUDA, gpu_id) with core.DeviceScope(device): for l in losses_by_gpu[gpu_id]: lg = create_grad(l) loss_grad[str(l)] = str(lg) model.AddGradientOperators(loss_grad) def FinalizeAfterCheckpoint(model, blobs, sync_iter=True): if not hasattr(model, "_checkpoint_net"): uniq_blob_names = [stripParamName(p) for p in blobs] # Synchronize to the blob lookup map, as the provided # blobs might have non-parameters, such as momemtum blobs. log.info("Creating checkpoint synchronization net") devices = model.GetDevices() for name in uniq_blob_names: if name not in model._device_grouped_blobs: grouped = { d: core.BlobReference("gpu_{}{}{}".format( d, scope._NAMESCOPE_SEPARATOR, name) ) for d in devices} model._device_grouped_blobs[name] = grouped model._checkpoint_net = core.Net("checkpoint_sync_net") model._checkpoint_net.RunAllOnGPU() if (model._rendezvous is not None): checkpoint_init_net = core.Net("checkpoint_init_net") checkpoint_init_net.RunAllOnGPU() _AddDistributedParameterSync( devices, model, checkpoint_init_net, model._checkpoint_net, model._rendezvous, uniq_blob_names, ) workspace.RunNetOnce(checkpoint_init_net) # Setup sync of initial params _SyncParams(devices, model, model._checkpoint_net, uniq_blob_names) # Sync ITER -- which is in CPU scope if sync_iter: with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)): for gpu_idx in devices[1:]: model._checkpoint_net.Copy( "gpu_{}/ITER".format(devices[0]), "gpu_{}/ITER".format(gpu_idx), ) workspace.CreateNet(model._checkpoint_net) # Run the sync log.info("Run checkpoint net") workspace.RunNet(model._checkpoint_net.Proto().name) def _Broadcast(devices, model, net, param): # TODO(akyrola): replace with NCCLBroadcast when it's working # Copy params from gpu_0 to other master_gpu = devices[0] for gpu_idx in devices[1:]: device_opt = core.DeviceOption(caffe2_pb2.CUDA, gpu_idx) with core.DeviceScope(device_opt): net.Copy( model._device_grouped_blobs[param][master_gpu], model._device_grouped_blobs[param][gpu_idx] ) def _SyncParams(devices, model, net, unique_param_names=None): if unique_param_names is None: unique_param_names = model._param_names for param in unique_param_names: _Broadcast(devices, model, net, param) def _AddDistributedParameterSync( devices, model, init_net, net, rendezvous, uniq_param_names=None, ): if uniq_param_names is None: uniq_param_names = model._param_names device_opt = core.DeviceOption(caffe2_pb2.CUDA, devices[0]) # ITER is in CPU scope :( with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)): comm_world = init_net.CreateCommonWorld( rendezvous['kv_handler'], "iter_cw", name=net.Proto().name + ".iter_cw_op", size=rendezvous['num_shards'], rank=rendezvous['shard_id'], engine=rendezvous['engine'], ) net.Broadcast( inputs=[comm_world, "gpu_{}/ITER".format(devices[0])], outputs=["gpu_{}/ITER".format(devices[0])], engine=rendezvous['engine'], ) for param_name in sorted(uniq_param_names): param = model._device_grouped_blobs[param_name][devices[0]] with core.DeviceScope(device_opt): param_cpu = net.CopyGPUToCPU(param, str(param) + "cpu") with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)): comm_world = init_net.CreateCommonWorld( rendezvous['kv_handler'], "{}_cw".format(param_name), name=net.Proto().name + ".{}_cw_op".format(param_name), size=rendezvous['num_shards'], rank=rendezvous['shard_id'], engine=rendezvous['engine'], ) # Temp: copy to CPU net.Broadcast( inputs=[comm_world, param_cpu], outputs=[param_cpu], engine=rendezvous['engine'], ) with core.DeviceScope(device_opt): net.CopyCPUToGPU(param_cpu, param) def _AllReduceGradients(devices, model, rendezvous): if rendezvous is None: _AllReduceGradientsSingleHost(devices, model) else: _AllReduceGradientsDistributed(devices, model, rendezvous) def _AllReduceGradientsDistributed( devices, model, rendezvous, ): num_workers = model.net.Proto().num_workers assert num_workers > 1, "Please specify more than 1 worker" all_reduce_engine = rendezvous['engine'] # Make list of gradients in reverse order reverse_ordered_grads = _GetReverseOrderedGrads(model) # Step 1: sum gradients from local GPUs to master GPU master_device_opt = core.DeviceOption(caffe2_pb2.CUDA, devices[0]) reducing_device_opt = master_device_opt if all_reduce_engine == "RDMA_TCP": reducing_device_opt = core.DeviceOption(caffe2_pb2.CPU, 0) # We need to specify a partial order using control_input to # ensure progress (since all machines need to do same all reduces # in parallel) num_controls = min(4, num_workers - 1) cyclical_controls = [] counter = 0 nccl_control_blob = None # Note: sorted order to ensure each host puts the operators in # same order. for grad_name in reverse_ordered_grads: master_grad = model._device_grouped_blobs[grad_name][devices[0]] grads_group = model._device_grouped_blobs[grad_name].values() assert master_grad in grads_group # Remark: NCCLReduce does not support in-place modifications # so we need a temporary gradient blob reduced_grad = str(master_grad) + "_red" with core.DeviceScope(master_device_opt): model.ConstantFill(master_grad, reduced_grad, value=0.0) # Temp fix since NCCLReduce does not work model.net.NCCLAllreduce( grads_group, grads_group, control_input=nccl_control_blob, ) nccl_control_blob = grads_group[0] model.net.Copy(master_grad, reduced_grad) # RDMA_TCP works only on CPU context, so we need a temporary # cpu-bound scratch blob. if all_reduce_engine == "RDMA_TCP": with core.DeviceScope(reducing_device_opt): model.param_init_net.ConstantFill( [], reduced_grad + "cpu", shape=[1], value=0.0 ) with core.DeviceScope(master_device_opt): # Hack to ensure the cpu-scratch blob is initialized # prior to running the net. model.param_init_net.CopyGPUToCPU( str(master_grad).replace("_grad", ""), reduced_grad + "cpu" ) model.net.CopyGPUToCPU(reduced_grad, reduced_grad + "cpu") reduced_grad = reduced_grad + "cpu" control_input = None if len(cyclical_controls) < num_controls \ else cyclical_controls[counter % num_controls] with core.DeviceScope(reducing_device_opt): # Step 2: allreduce between all hosts, between master GPUs comm_world = model.param_init_net.CreateCommonWorld( rendezvous['kv_handler'], "{}_cw".format(grad_name), name="{}_cw_op".format(grad_name), size=rendezvous['num_shards'], rank=rendezvous['shard_id'], engine=rendezvous['engine'], ) model.net.Allreduce( inputs=[comm_world, reduced_grad], outputs=[reduced_grad], engine=all_reduce_engine, control_input=control_input, ) if reducing_device_opt != master_device_opt: with core.DeviceScope(master_device_opt): model.net.CopyCPUToGPU(reduced_grad, master_grad) else: with core.DeviceScope(master_device_opt): model.net.Copy(reduced_grad, master_grad) if len(cyclical_controls) < num_controls: cyclical_controls.append(reduced_grad) else: cyclical_controls[counter % num_controls] = reduced_grad counter += 1 # Step 3: broadcast locally _Broadcast(devices, model, model.net, grad_name) def _AllReduceGradientsSingleHost(devices, model): """Performs NCCL AllReduce to distribute gradients to all the GPUs.""" if len(devices) == 1: return # Gradients in reverse order reverse_ordered_grads = _GetReverseOrderedGrads(model) # Now we need to Allreduce gradients on all the GPUs. # Pick GPU #0 as a master GPU. master_device_opt = core.DeviceOption(caffe2_pb2.CUDA, devices[0]) last_out = None for grad_name in reverse_ordered_grads: with core.DeviceScope(master_device_opt): # Group by grads for reduce. grads_group = model._device_grouped_blobs[grad_name].values() assert len(grads_group) == len(devices), \ "Each GPU from {}, should have a copy of {}.".format( devices, grad_name) model.NCCLAllreduce( grads_group, grads_group, control_input=last_out, ) # last_out is used to serialize the execution of nccls last_out = grads_group[0] def _AllReduceComputedParams(devices, model, rendezvous): if rendezvous is None: _AllReduceComputedParamsSingleHost(devices, model) else: _AllReduceComputedParamsDistributed(devices, model, rendezvous) def _AllReduceComputedParamsDistributed( devices, model, rendezvous, ): _AllReduceComputedParamsSingleHost(devices, model) log.warn("Distribetud computed params all-reduce not implemented yet") def _AllReduceComputedParamsSingleHost(devices, model): ''' Average computed params over all devices ''' if len(devices) == 1: return for param_name in model._computed_param_names: # Copy from master to others -- averaging would be perhaps better, # but currently NCCLAllReduce is too prone to deadlock _Broadcast(devices, model, model.net, param_name) def _GetReverseOrderedGrads(model): ''' Returns the gradients in reverse order (namespace stripped), for the optimal synchronization order. ''' return list(reversed(model._grad_names)) # A helper function to extract a parameter's name def stripParamName(param): # Format is "a/b/c/d" -> d name = str(param) sep = scope._NAMESCOPE_SEPARATOR return name[name.rindex(sep) + 1:] def _AnalyzeOperators(model): ''' Look at all the operators and check that they do not cross device scopes ''' for op in model.Proto().op: if "NCCL" in op.type or "Copy" in op.type: continue op_dev = op.device_option op_gpu = op_dev.cuda_gpu_id namescope = "gpu_{}/".format(op_gpu) for inp in list(op.input) + list(op.output): if inp.startswith("gpu_") and not inp.startswith(namescope): raise Exception( "Blob {} of op {}, should have namescope {}. Op: {}".format( inp, op.type, "gpu_{}/".format(op_gpu), str(op), )) def _GroupByDevice(devices, params): ''' Groups blobs by device, returning a map of [blobname] = {0: BlobRef, 1: ..}. Returns ordered dictionary, ensuring the original order. ''' grouped = OrderedDict() assert len(params) % len(devices) == 0,\ "There should be equal number of params per device" num_params_per_device = int(len(params) / len(devices)) for i, p in enumerate(params): assert isinstance(p, core.BlobReference), \ "Param {} is not of type BlobReference".format(p) name = stripParamName(p) gpuid = devices[i // num_params_per_device] assert "gpu_{}/".format(gpuid) in p.GetNameScope(),\ "Param {} expected to have namescope 'gpu_{}'".format(str(p), gpuid) if name not in grouped: grouped[name] = {} grouped[name][gpuid] = p # Confirm consistency for j, (p, ps) in enumerate(grouped.items()): assert \ len(ps) == len(devices), \ "Param {} does not have value for each device (only {}: {})".format( p, len(ps), ps, ) # Ensure ordering assert(ps[devices[0]] == params[j]) return grouped