""" This module provides the infrastructure for creating and managing compile package for torch.compile. We mainly have two abstractions here: - CompilePackage: Overarching data structure for store and lookup a list of compiled codes. - CodeCacheEntry: Data structure for a single code being compiled by torch.compile. The caching behavior is always under user control explicitly so that a stronger guarantee can be provided about cache hit for a specific compiled model. Users can load the compile package from a different process or host. """ import contextlib import dataclasses import functools import hashlib import importlib import logging import os import pickle import platform import sys import types from collections.abc import Generator from typing import Any, NewType, Optional import torch import torch._inductor.package from torch._dynamo.precompile_context import PrecompileCacheArtifact, PrecompileContext from torch.compiler._cache import CacheArtifactFactory from .bytecode_transformation import get_code_keys logger = logging.getLogger(__name__) @dataclasses.dataclass(frozen=True) class SerializedCode: co_argcount: int co_posonlyargcount: int co_kwonlyargcount: int co_nlocals: int co_stacksize: int co_flags: int co_code: bytes co_consts: tuple[Any, ...] co_names: tuple[str, ...] co_varnames: tuple[str, ...] co_filename: str co_name: str co_firstlineno: int co_cellvars: tuple[str, ...] co_freevars: tuple[str, ...] co_linetable: Optional[bytes] = None co_qualname: Optional[str] = None co_exceptiontable: Optional[bytes] = None co_lnotab: Optional[str] = None @classmethod @functools.cache def from_code_object(cls, code: types.CodeType) -> "SerializedCode": kwargs = {key: getattr(code, key) for key in get_code_keys()} kwargs["co_consts"] = tuple( cls.from_code_object(c) if isinstance(c, types.CodeType) else c for c in kwargs["co_consts"] ) return cls(**kwargs) @classmethod @functools.cache def to_code_object(cls, serialized_code: "SerializedCode") -> types.CodeType: kwargs = {key: getattr(serialized_code, key) for key in get_code_keys()} kwargs["co_consts"] = tuple( cls.to_code_object(c) if isinstance(c, SerializedCode) else c for c in kwargs["co_consts"] ) return types.CodeType( *kwargs.values(), ) @dataclasses.dataclass class _GuardedCodeCacheEntry: """ Contains the serializable information associated with a single compilation in dynamo. To restore an execution of compiled code, we will need to serialize the following data: - Dynamo bytecode for mapping Python inputs/outputs. - Dynamo guards. """ guards_state: bytes dynamo_code: SerializedCode _BackendId = NewType("_BackendId", str) # __compiled_fn _FunctionId = NewType("_FunctionId", str) # __resume_at @dataclasses.dataclass class _DynamoCodeCacheEntry: """ Contains the serializable information associated with a single code object in dynamo. To restore an execution of compiled code, we will need the following ingredients: 1. The "original" code object, which serves as the entry point for eager execution, i.e. the code only executed when there's no cache entry hit. 2. The python module name this code object belongs to, for identifying the enclosing global scope to inject compiled and resume functions. 3. A list of function names that pointing to this code object. There could be multiple function objects pointing to the same code such as recursive functions. 4. A list of guarded code that eval frame dispatches to. 5. A list of imported module objects unioned from all compiled branches. 6. A list of "backends" (compiled fx graph) unioned from all compield branches. """ python_code: SerializedCode python_module: str function_names: list[_FunctionId] guarded_codes: list[_GuardedCodeCacheEntry] import_sources: dict[str, str] backend_ids: list[_BackendId] @dataclasses.dataclass class _DynamoCacheEntry: codes: list[_DynamoCodeCacheEntry] python_version: str = platform.python_version() torch_version: str = torch.__version__ @property def backend_ids(self) -> set[_BackendId]: return {backend_id for code in self.codes for backend_id in code.backend_ids} @CacheArtifactFactory.register class _DynamoCacheArtifact(PrecompileCacheArtifact[_DynamoCacheEntry]): @staticmethod def type() -> str: return "precompile_dynamo" def after_deserialization(self) -> _DynamoCacheEntry: return pickle.loads(self.content) class CompilePackage: """ CompilePackage is considered a low level component and should not be directly exposed to end users. It has the following interface: 1. `CompilePackage.__init__()` which optionally takes previously serialized dynamo states. a. when `dynamo` argument is None, it will construct a brand new CompilePackage object. b. when `dynamo` argument is not None, it will load a pre-compiled dynamo state. 2. `package.save()` which dumps the dynamo and backend states to a DynamoCacheEntry object. 3. `package.install(backends) which will handle all the side-effectful global scope updates with compiled functions and resume functions. """ def __init__(self, fn: Any, dynamo: Optional[_DynamoCacheEntry] = None) -> None: self._innermost_fn = None self._codes: dict[types.CodeType, _DynamoCodeCacheEntry] = {} self._current_entry: Optional[_DynamoCodeCacheEntry] = None self._installed_globals: dict[types.ModuleType, list[str]] = {} # For debugging/testing purpose only. self._cached_backends: dict[_BackendId, Any] = {} self._initialize(fn, dynamo) # Always go back to a clean state after initialization. self.uninstall() self.validate() def _initialize(self, fn: Any, dynamo: Optional[_DynamoCacheEntry] = None) -> None: from .eval_frame import innermost_fn self._innermost_fn = innermost_fn(fn) assert self._innermost_fn is not None if dynamo is not None: assert isinstance(dynamo, _DynamoCacheEntry) if dynamo.python_version != platform.python_version(): raise RuntimeError( f"Compile package was created with a different Python version: {dynamo.python_version}" ) if dynamo.torch_version != torch.__version__: raise RuntimeError( f"Compile package was created with a different PyTorch version: {dynamo.torch_version}" ) main, *codes = dynamo.codes self._codes = {self._innermost_fn.__code__: main} for code in codes: self._codes[SerializedCode.to_code_object(code.python_code)] = code else: self._add_function( self._innermost_fn.__code__, self._innermost_fn.__module__ ) def _add_function( self, python_code: types.CodeType, python_module: str, name: Optional[_FunctionId] = None, ) -> None: if python_code not in self._codes: code = _DynamoCodeCacheEntry( python_code=SerializedCode.from_code_object(python_code), python_module=python_module, function_names=[], guarded_codes=[], import_sources={}, backend_ids=[], ) self._codes[python_code] = code else: code = self._codes[python_code] assert code.python_module == python_module if name is not None: code.function_names.append(name) @property def cached_backends(self) -> dict[_BackendId, Any]: return self._cached_backends @functools.cached_property def source_id(self) -> str: assert self._innermost_fn is not None sha256_hash = hashlib.sha256() sha256_hash.update(self._innermost_fn.__qualname__.encode()) sha256_hash.update(str(self._innermost_fn.__code__.co_firstlineno).encode()) return sha256_hash.hexdigest() @contextlib.contextmanager def code_context(self, code: types.CodeType) -> Generator[None, None, None]: assert self._current_entry is None entry = self._codes[code] self._current_entry = entry try: yield finally: self._current_entry = None def add_guarded_code( self, guards_state: bytes, dynamo_code: types.CodeType, ) -> None: assert self._current_entry is not None guarded_code_entry = _GuardedCodeCacheEntry( guards_state=guards_state, dynamo_code=SerializedCode.from_code_object(dynamo_code), ) self._current_entry.guarded_codes.append(guarded_code_entry) def add_resume_function( self, python_code: types.CodeType, python_module: str, name: Optional[str], ) -> None: self._add_function( python_code, python_module, _FunctionId(name) if name else None ) def add_import_source(self, alias: str, module_name: str) -> None: assert self._current_entry is not None self._current_entry.import_sources[alias] = module_name def add_backend_id(self, backend_id: str, backend: Optional[Any] = None) -> None: assert self._current_entry is not None assert backend_id.startswith("__compiled_fn_") # sanity check backend_id = _BackendId(backend_id) self._current_entry.backend_ids.append(backend_id) if backend is not None: self._cached_backends[backend_id] = backend def validate(self) -> None: assert self._current_entry is None assert self._innermost_fn is not None assert next(iter(self._codes)) is self._innermost_fn.__code__ def _install_global(self, module: types.ModuleType, name: str, value: Any) -> None: module.__dict__[name] = value self._installed_globals.setdefault(module, []).append(name) def uninstall(self) -> None: from torch._C._dynamo.eval_frame import _reset_precompile_entries assert self._innermost_fn is not None for module, names in self._installed_globals.items(): for name in names: module.__dict__.pop(name) self._installed_globals = {} _reset_precompile_entries(self._innermost_fn.__code__) def install(self, backends: dict[_BackendId, Any]) -> None: """ Sync the package states to the compiled function. This includes the following actions: 1. Clean up the previously installed states. 2. Install the compiled functions to global scopes. 3. Install the precompiled cache entries to ExtraStates on the code object. """ from torch._C._dynamo.eval_frame import _load_precompile_entry self.uninstall() for code, entry in self._codes.items(): module = sys.modules[entry.python_module] for alias, module_name in entry.import_sources.items(): self._install_global( module, alias, importlib.import_module(module_name) ) for function_name in entry.function_names: fn = types.FunctionType(code, module.__dict__, function_name) self._install_global(module, function_name, fn) for backend_id in entry.backend_ids: if backend_id not in backends: raise RuntimeError( f"Backend {backend_id} is not found in the given backends" ) backend = backends[backend_id] self._install_global( module, backend_id, torch._dynamo.disable(backend), ) for code, entry in self._codes.items(): for guarded_code in entry.guarded_codes: guards_state = pickle.loads(guarded_code.guards_state) assert isinstance(guards_state, torch._dynamo.guards.GuardsState) check_fn_manager = torch._dynamo.guards.CheckFunctionManager( code, guards_state.output_graph, guards_serialization_mode="load", shape_code_parts=guards_state.shape_code_parts, ) _load_precompile_entry( code, check_fn_manager.guard_manager, SerializedCode.to_code_object(guarded_code.dynamo_code), ) def cache_entry(self) -> _DynamoCacheEntry: self.validate() return _DynamoCacheEntry(codes=list(self._codes.values())) @CacheArtifactFactory.register class EagerCacheArtifact(PrecompileCacheArtifact[Any]): @staticmethod def type() -> str: return "precompile_eager" def after_deserialization(self) -> Any: return pickle.loads(self.content) class DynamoStore: """ A DynamoStore tracks active CompilePackages, and provides methods to store and retrieve them. """ def record_package(self, package: CompilePackage) -> None: """Records a package to PrecompileContext, so that it can be serialized later.""" cache_entry = package.cache_entry() pickled_result = pickle.dumps(cache_entry) PrecompileContext.record_artifact( _DynamoCacheArtifact.type(), key=package.source_id, content=pickled_result ) def record_eager_backend(self, backend_id: _BackendId, backend: Any) -> None: """Records eager fx graphs to PrecompileContext for testing purposes.""" pickled_result = pickle.dumps(backend) PrecompileContext.record_artifact( EagerCacheArtifact.type(), key=backend_id, content=pickled_result ) def save_package(self, package: CompilePackage, path: str) -> None: """Saves a package to a given path. Grabs backends from PrecompileContext.""" backend_content = {} cache_entry = package.cache_entry() for backend_id in cache_entry.backend_ids: backend_content[backend_id] = PrecompileContext.serialize_artifact_by_key( backend_id ) try: with open(os.path.join(path, "dynamo"), "wb") as dynamo_path: pickle.dump(cache_entry, dynamo_path) with open(os.path.join(path, "backends"), "wb") as backend_path: pickle.dump(backend_content, backend_path) except Exception as e: raise RuntimeError(f"Failed to save package to {path}: {e}") from e def load_package( self, fn: Any, path: str ) -> tuple[CompilePackage, dict[_BackendId, Any]]: """Loads a package from a given path and returns it plus a list of deserialized backends""" try: with open(os.path.join(path, "dynamo"), "rb") as dynamo_path: cache_entry = pickle.load(dynamo_path) with open(os.path.join(path, "backends"), "rb") as backend_path: backend_content = pickle.load(backend_path) except Exception as e: raise RuntimeError(f"Failed to load package from path {path}: {e}") from e for backend_id, backend in backend_content.items(): backend_content[backend_id] = backend.after_deserialization() package = CompilePackage(fn, cache_entry) return package, backend_content