#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace torch { namespace jit { namespace script { using FunctionTable = std::unordered_map; using ValueTable = std::unordered_map; using TypeTable = std::unordered_map; using AttributeMap = std::unordered_map; using ListAttributeMap = std::unordered_map>; using TypeAndRange = std::pair; // Holds mappings from a variable name to a refined type for that variable // E.g if x is not None is true than we can refine x from type t? to t. struct Refinements { // using ordered map for deterministic graph output std::map mappings_; void setRefinement(const std::string& name, TypeAndRange mapping) { mappings_[name] = std::move(mapping); } c10::optional getRefinement(const std::string& name) const { const auto& maybe_mapping = mappings_.find(name); if (maybe_mapping == mappings_.end()) { return c10::nullopt; } return maybe_mapping->second; } // return the intersection of the values to type mappings between this // types can be unified void intersectRefinements(const Refinements& other) { Refinements ret; for (const auto& name_mapping : mappings_) { const auto& name = name_mapping.first; const auto& mapping = name_mapping.second; if (auto other_mapping = other.getRefinement(name_mapping.first)) { const auto maybe_unified_type = unifyTypes(mapping.first, other_mapping->first); if (maybe_unified_type) { ret.setRefinement( name, TypeAndRange(*maybe_unified_type, mapping.second)); } } } mappings_ = std::move(ret.mappings_); } // return the union of the values to type mappings in a and b whose // types can be unified void unionRefinements(const Refinements& other) { Refinements ret; for (const auto& name_mapping : mappings_) { const auto& name = name_mapping.first; const auto& mapping = name_mapping.second; TypePtr t_1 = mapping.first; if (auto other_mapping = other.getRefinement(name_mapping.first)) { TypePtr t_2 = other_mapping->first; c10::optional maybe_unified_type = c10::nullopt; if (t_1->isSubtypeOf(t_2)) { maybe_unified_type = t_1; } else if (t_2->isSubtypeOf(t_1)) { maybe_unified_type = t_2; } if (maybe_unified_type) { ret.setRefinement( name, TypeAndRange(*maybe_unified_type, mapping.second)); } } else { ret.setRefinement(name, mapping); } } for (auto& name_mapping : other.mappings_) { if (!getRefinement(name_mapping.first)) { ret.setRefinement(name_mapping.first, name_mapping.second); } } mappings_ = std::move(ret.mappings_); } }; // When a comparison like x is None is made, we associate type refinements // with its true value and its false value. If a boolean that has refinements // associated with it is used in a conditional of an if statememt, the true and // false refinements are inserted into the corresponding blocks struct BoolInfo { BoolInfo(Refinements true_refinements, Refinements false_refinements) : true_refinements_(std::move(true_refinements)), false_refinements_(std::move(false_refinements)){}; BoolInfo() = default; Refinements true_refinements_; Refinements false_refinements_; BoolInfo* mergeOr(const BoolInfo& other) { // if the result of an OR is true, either a & b could have been true, // so we take the intersection of a.true_refinements & b.true_refinements. // if the result is false, both a and b had to be false, // so we take their union. true_refinements_.intersectRefinements(other.true_refinements_); false_refinements_.unionRefinements(other.false_refinements_); return this; } BoolInfo* mergeAnd(const BoolInfo& other) { // if the result of an AND is true, both a & b had to be true, // so we take the union of a.true_refinements and b.true_refinements. // if the result is false, either a or b could have been false, // so we take their intersection. true_refinements_.unionRefinements(other.true_refinements_); false_refinements_.intersectRefinements(other.false_refinements_); return this; } }; static Value* asSimple(const SugaredValuePtr& value) { if (SimpleValue* sv = dynamic_cast(value.get())) { return sv->getValue(); } return nullptr; } static std::shared_ptr makeMagic( const std::string& name, SugaredValuePtr base) { return std::make_shared(name, base); } // Auxiliary data structure for desugaring variable binding into our always // explicitly scoped language as we descend down nested control structures in // the frontend (which themselves don't introduce scopes) // // The Environment keeps track of two tables, one for values which are not first // class and a type table for values which are. When a first class value // is set in the environment, we emit a prim::Store which sets the // name of the variable to approriate type, and when a first-class value is // referenced we emit a prim::Load that generates a value of the appropriate // type. // // a = 1 // print(a) // becomes: // = prim::Store[name="a"](%a.1) // %a : int = prim::Load[name="a"]() // prim::Print(%a) struct Environment { Environment( Function& method, ResolverPtr resolver, Block* b, std::shared_ptr next = nullptr) : method(method), resolver(std::move(resolver)), b(b), next(std::move(next)) {} Function& method; ResolverPtr resolver; std::unordered_map> error_messages; Block* b; std::shared_ptr next; // set type error in the lowest environment. if the variable is used after an // error has been set, then we will use the more informative error message void setVariableTypeError( const std::string& name, std::function msg) { auto runner = this; while (runner->next) { runner = runner->next.get(); } runner->error_messages[name] = msg; } // see if type error has been set for a variable c10::optional findVariableTypeError(const std::string& name) { auto runner = this; while (runner->next) { runner = runner->next.get(); } auto msg = runner->error_messages.find(name); if (msg != runner->error_messages.end()) { return msg->second(); } else { return c10::nullopt; } } SugaredValuePtr insertLoad(const std::string& name, const TypePtr& type) { auto g = b->owningGraph(); auto load = g->insertNode(g->createLoad(name, type)); if (meaningfulName(name)) { load->output()->setDebugName(name); } return std::make_shared(load->output()); } void insertStore(const std::string& name, const SourceRange& loc, Value* v) { auto g = b->owningGraph(); auto store = g->insertNode(g->createStore(name, v))->setSourceRange(loc); type_table[name] = store->input()->type(); } SugaredValuePtr findInThisFrame(const std::string& name) { auto it = value_table.find(name); if (it != value_table.end()) { return it->second; } auto it2 = type_table.find(name); if (it2 != type_table.end()) { return insertLoad(name, it2->second); } return nullptr; } SugaredValuePtr findInParentFrame(const std::string& name) { return next ? next->findInAnyFrame(name) : nullptr; } void setType(const std::string& name, TypePtr type) { type_table[name] = std::move(type); } SugaredValuePtr findInAnyFrame(const std::string& name) { for (auto runner = this; runner; runner = runner->next.get()) { if (auto r = runner->findInThisFrame(name)) { return r; } } return nullptr; } Block* block() { return b; } void setVar(const SourceRange& loc, const std::string& name, Value* value) { setSugaredVar(loc, name, std::make_shared(value)); } void setSugaredVar( const SourceRange& loc, const std::string& name, SugaredValuePtr value) { Value* as_simple_value = asSimple(value); if (as_simple_value && !as_simple_value->hasDebugName() && meaningfulName(name) && // note: if the value wasn't defined in this block, we might be giving a // name only used inside this block to a value outside of this. this is // not normally helpful for debugging and causes import/export jitter. as_simple_value->node()->owningBlock() == block()) { as_simple_value->setDebugName(name); } // prevent re-assignment involving any sugared values // any reassignment like: // a = ... // while ... // a = .. // requires 'a' to be first-class in the graph since its value depends on // control flow if (auto parent = findInParentFrame(name)) { if (!as_simple_value) { throw ErrorReport(loc) << "Cannot re-assign '" << name << "' to a value of type " << value->kind() << " because " << name << " is not a first-class value. Only reassignments to first-class values are allowed"; } Value* simple_parent = asSimple(parent); if (!simple_parent) { throw ErrorReport(loc) << "Cannot re-assign '" << name << "' because it has type " << value->kind() << " and " << name << " is not a first-class value. Only reassignments to first-class values are allowed"; } if (!as_simple_value->type()->isSubtypeOf( unshapedType(simple_parent->type()))) { auto error = ErrorReport(loc); error << "Variable '" << name << "' previously has type " << simple_parent->type()->python_str() << " but is now being assigned to a value of type " << as_simple_value->type()->python_str(); // Special-cased error msg if we're trying to assign to a tensor list. if (simple_parent->type()->kind() == TypeKind::ListType && as_simple_value->type()->kind() == TypeKind::ListType) { error << "\n. (Note: empty lists are constructed as Tensor[]; " << "if you want an empty list of a different type, " << "use `torch.jit.annotate(List[T], [])`, " << "where `T` is the type of elements in the list)"; } throw error; } } if (as_simple_value) { insertStore(name, loc, std::move(as_simple_value)); } else { value_table[name] = std::move(value); } } SugaredValuePtr getSugaredVar(const Ident& ident, bool required = true) { return getSugaredVar(ident.name(), ident.range()); } Value* getVar(const Ident& ident) { return getSugaredVar(ident)->asValue(ident.range(), method); } SugaredValuePtr getSugaredVar( const std::string& ident, const SourceRange& range, bool required = true) { auto retval = findInAnyFrame(ident); if (!retval) { static std::unordered_map globals = { {"print", std::make_shared()}, {"float", makeMagic( "__float__", std::make_shared(FloatType::get(), aten::Float))}, {"int", makeMagic( "__int__", std::make_shared(IntType::get(), aten::Int))}, {"bool", makeMagic( "__bool__", std::make_shared(BoolType::get(), aten::Bool))}, {"str", makeMagic( "__str__", std::make_shared(StringType::get(), aten::str))}, {"getattr", std::make_shared()}, {"isinstance", std::make_shared()}, // todo(zach): remove when we can correctly export torch.full via ONNX // or we have implicit conversion that can convert numbers to tensors {"_to_tensor", std::make_shared(TensorType::get(), prim::NumToTensor)}, {"len", makeMagic( "__len__", std::make_shared(aten::len, at::nullopt))}, {"hex", makeMagic( "__hex__", std::make_shared(aten::hex, at::nullopt))}, {"oct", makeMagic( "__oct__", std::make_shared(aten::oct, at::nullopt))}, {"round", makeMagic( "__round__", std::make_shared(aten::round, at::nullopt))}, {"hash", std::make_shared(aten::hash, at::nullopt)}, {"min", std::make_shared(prim::min, at::nullopt)}, {"max", std::make_shared(prim::max, at::nullopt)}, {"abs", std::make_shared(prim::abs, at::nullopt)}, {"all", std::make_shared(aten::all, at::nullopt)}, {"divmod", std::make_shared(aten::divmod, at::nullopt)}, {"list", std::make_shared(aten::list, at::nullopt)}, {"ord", std::make_shared(aten::ord, at::nullopt)}, {"chr", std::make_shared(aten::chr, at::nullopt)}, {"bin", std::make_shared(aten::bin, at::nullopt)}, {"range", std::make_shared(prim::range)}, {"zip", std::make_shared(prim::zip)}, {"enumerate", std::make_shared(prim::enumerate)}, {"rangelist", std::make_shared(prim::rangelist, at::nullopt)}, {"sorted", std::make_shared(aten::sorted, at::nullopt)}, }; auto it = globals.find(ident); if (it != globals.end()) { retval = it->second; } } if (!retval) { if (auto type = resolver->resolveType(ident, range)) { if (auto class_type = type->cast()) { retval = std::make_shared(class_type); } else if (auto tuple_type = type->cast()) { retval = std::make_shared(tuple_type); } } } if (!retval) { retval = resolver->resolveValue(ident, method, range); } if (!retval && required) { // check if this value was not emitted in an if statement because of a // type mismatch. if it was, then we print a more informative error msg if (auto msg = findVariableTypeError(ident)) { throw ErrorReport(range) << *msg << "and was used here"; } throw ErrorReport(range) << "undefined value " << ident; } return retval; } Value* getVar(const std::string& ident, const SourceRange& range) { return getSugaredVar(ident, range)->asValue(range, method); } std::vector definedVariables() { std::vector result; for (auto& kv : type_table) { result.push_back(kv.first); } return result; } private: TypeTable type_table; ValueTable value_table; }; template static Value* materializeConstant( T val, Graph& graph, const SourceRange& r, std::unordered_map& map) { auto existing_constant = map.find(val); if (existing_constant != map.end()) { return existing_constant->second; } WithInsertPoint guard(graph.block()->nodes().front()); auto new_constant = graph.insertConstant(val, nullptr, r); map[val] = new_constant; return new_constant; } inline bool isSupportedListElementType(const TypePtr& type) { return type->isSubtypeOf(TensorType::get()) || type->isSubtypeOf(NumberType::get()); } // Information for each def being emitted. // Defs can be nested to support closures so we need a stack of this information // Currently records information about the functions return type. struct DefContext { TypePtr declared_return_type_; // nullptr if not annotated TypePtr merged_return_type_; // nullptr if a Return has not been seen yet }; struct to_ir { to_ir( const Def& def, ResolverPtr resolver_, const Self* self, Function& method) // method being constructed : method(method), graph(method.graph()), resolver(std::move(resolver_)), typeParser_(resolver), environment_stack(nullptr) { AT_ASSERT(resolver); pushFrame(graph->block(), /*starts_def=*/true); // Type annotations exclude explicitly typing the "self" parameter, so in // the case that this is a method with self we expect one fewer parameter // annotation than the number of parameters this Def takes. if (self && def.decl().params().size() == 0) { throw ErrorReport(def.decl().params().range()) << "methods must have a self argument"; } method.setSchema(emitDef(def, self, graph->block())); runCleanupPasses(graph); } private: Function& method; std::shared_ptr graph; ResolverPtr resolver; std::unordered_map integral_constants; std::unordered_map fp_constants; std::unordered_set exit_blocks; ScriptTypeParser typeParser_; // Singly-linked list of environments. This top element contains a member // `next` that points to the most immediate enclosing scope's value. std::shared_ptr environment_stack; std::vector def_stack_; void pushFrame(Block* b, bool starts_def = false) { if (starts_def) { def_stack_.emplace_back(); } environment_stack = std::make_shared(method, resolver, b, environment_stack); } std::shared_ptr popFrame(bool ends_def = false) { auto old_frame = environment_stack; environment_stack = environment_stack->next; if (ends_def) { def_stack_.pop_back(); } return old_frame; } // If the graph might not return, add an implicit None return at the end void handleMaybeNoReturn(const Def& def, Block* block) { auto decl_ret = def_stack_.back().declared_return_type_; if (exit_blocks.count(block) == 0) { auto decl_ret = def_stack_.back().declared_return_type_; if (decl_ret && decl_ret != NoneType::get()) { throw ErrorReport(def.range()) << "Function was not annotated as having type None, but does not " << "return along all paths"; } WithInsertPoint b(*block->nodes().end()); emitReturn(Return::create( def.range(), Expr(Compound::create(TK_NONE, def.range(), {})))); } else { // if we haven't seen any return statements, but the graph block exits // (the funciton always throws) then we accept the declared return type if // it exists or set it to none if (def_stack_.back().merged_return_type_ == nullptr) { def_stack_.back().merged_return_type_ = decl_ret != nullptr ? decl_ret : NoneType::get(); } } } FunctionSchema emitDef(const Def& def, const Self* self, Block* block) { auto schema = extractSchemaFromDef(def, self); // TODO need guards on init returning none if (schema.returns().size() == 1) { def_stack_.back().declared_return_type_ = schema.returns().at(0).type(); } std::vector arguments = emitFormalArguments(def, self, schema, block); // body auto stmts_list = def.statements(); emitStatements(stmts_list.begin(), stmts_list.end()); handleMaybeNoReturn(def, block); std::vector returns = {emitOutput(def.range(), schema, block)}; return {def.name().name(), "", std::move(arguments), std::move(returns)}; } std::vector evaluateDefaults( const SourceRange& r, const std::vector& default_types, const std::vector& default_exprs) { std::vector default_values; if (default_exprs.empty()) return default_values; // To evaluate the default expressions, we create a graph with no inputs, // and whose returns are the default values we need. // We then run constant prop on this graph and check the results are // constant. This approach avoids having to have separate handling of // default arguments from standard expressions by piecing together existing // machinery for graph generation, constant propgation, and constant // extraction. auto tuple_type = Subscript::create( r, Var::create(r, Ident::create(r, "Tuple")), List::create(r, default_types)); auto blank_decl = Decl::create( r, List::create(r, {}), Maybe::create(r, tuple_type)); auto tuple_expr = TupleLiteral::create(r, List::create(r, default_exprs)); auto ret = Return::create(r, tuple_expr); auto def = Def::create( r, Ident::create(r, "defaults"), blank_decl, List::create(r, {ret})); CompilationUnit cu; cu.define(c10::nullopt, {def}, {resolver}, nullptr); Stack stack; // XXX: We need to turn optimization off here because otherwise we try to // recursively initialize stuff in DecomposeOps. GraphOptimizerEnabledGuard guard(false); cu.get_function(def.name().name()).run(stack); return stack.at(0).toTuple()->elements(); } std::vector parseArgsFromDecl(const Decl& decl, const Self* self) { auto params_begin = decl.params().begin(); auto params_end = decl.params().end(); if (self) { ++params_begin; } std::vector retval; std::vector default_types; std::vector default_exprs; // gather any non-empty default arguments for (auto it = params_begin; it != params_end; ++it) { auto param = *it; auto def = param.defaultValue(); if (def.present()) { default_types.emplace_back(param.type().get()); default_exprs.emplace_back(def.get()); } } auto default_values = evaluateDefaults(decl.range(), default_types, default_exprs); auto defaults_it = default_values.begin(); for (auto it = params_begin; it != params_end; ++it) { auto decl_arg = *it; TypePtr type; c10::optional N; bool is_inferred_type = false; if (!decl_arg.type().present()) { // If this param doesn't have a type, default to "tensor" is_inferred_type = true; type = TensorType::get(); N = c10::nullopt; } else { // BroadcastList list can only appear at the argument level if (auto maybe_broad_list = typeParser_.parseBroadcastList(decl_arg.type().get())) { type = maybe_broad_list->first; N = maybe_broad_list->second; } else { type = typeParser_.parseTypeFromExpr(decl_arg.type().get()); N = c10::nullopt; } } c10::optional default_value = c10::nullopt; if (decl_arg.defaultValue().present()) { default_value = *defaults_it++; } auto arg = Argument( decl_arg.ident().name(), type, N, default_value, decl_arg.kwarg_only(), /*alias_info=*/c10::nullopt, is_inferred_type); retval.push_back(arg); } return retval; } std::vector parseReturnFromDecl(const Decl& decl) { // we represent no annoation on a return type as having no values in the // schema's return() list // in emitReturn we take the actual return value to be the value of the // return statement if no one was provided here if (!decl.return_type().present()) return {}; if (typeParser_.parseBroadcastList(decl.return_type().get())) throw ErrorReport(decl.return_type().range()) << "Broadcastable lists cannot appear as a return type"; auto parsed_type = typeParser_.parseTypeFromExpr(decl.return_type().get()); return {Argument( "", parsed_type, /*N =*/c10::nullopt, /*default_value =*/c10::nullopt, /*kwarg_only =*/false)}; } FunctionSchema extractSchemaFromDef(const Def& def, const Self* self) { const auto name = def.name().name(); std::vector args = parseArgsFromDecl(def.decl(), self); std::vector returns = parseReturnFromDecl(def.decl()); return FunctionSchema( name, "", std::move(args), std::move(returns), false, false); } std::vector emitFormalArguments( const Def& def, const Self* self, const FunctionSchema& schema, Block* block) { std::vector arguments; // for schema // inputs auto it = def.decl().params().begin(); auto end = def.decl().params().end(); auto expected_annotation_size = def.decl().params().size(); if (self) { expected_annotation_size--; } if (schema.arguments().size() != expected_annotation_size) { throw ErrorReport(def.decl().params().range()) << "Number of type annotations for" << " function parameters (" << schema.arguments().size() << ")" << " does not match the number of parameters on the function (" << expected_annotation_size << ")!"; } if (self) { AT_ASSERT(it != end); const auto& name = (*it).ident().name(); Value* new_input = block->addInput()->setDebugName(name); environment_stack->setSugaredVar( (*it).ident().range(), name, self->makeSugared(new_input)); arguments.emplace_back(name, new_input->type()); ++it; } size_t arg_annotation_idx = 0; for (; it != end; ++it) { auto& name = (*it).ident().name(); // Add the input to the graph Value* new_input = block->addInput(); if (meaningfulName(name)) { new_input->setDebugName(name); } // Record the type for the schema and set the Type on the Value* arguments.push_back(schema.arguments().at(arg_annotation_idx++)); new_input->setType(arguments.back().type()); // NB: set type of new_input before setVar call so the Store is // typed appropriately environment_stack->setVar((*it).ident().range(), name, new_input); } return arguments; } Argument emitOutput( const SourceRange& range, const FunctionSchema& schema, Block* block) { // handleMaybeNoReturn ensures that merged_return_type_ is always set auto ret_type = def_stack_.back().merged_return_type_; TORCH_INTERNAL_ASSERT(ret_type); // in the ConvertToSSA pass, prim::ReturnStmts are lowered so that the // correct return value is set. Until then, we have a correctly-typed // placeholder return value. This is needed so that closures & graphs // are correctly typed. auto placeholder_return = graph->insertNode(graph->createUninitialized(ret_type))->output(); block->registerOutput(placeholder_return); return Argument("", def_stack_.back().merged_return_type_); } void emitStatements(const List& statements) { return emitStatements(statements.begin(), statements.end()); } // XXX - right now closures are used _only_ for defining gradients internally // There are several unfinished aspects that make them unusable generally // 1. We do not have a type, ivalue, operator to represent prim::Function, so // closure_node has type None // 2. There is no export logic for it yet, so it cannot be // exported/python_printed // 3. There is nothing preventing the assignment of already existing variables // inside the closures // the changes to those variables will just get forgotten. // 4. There is no parsing support in frontend.py, this is intentional since it // prevents people from accidentally using this feature. std::shared_ptr emitClosure( const std::function& emit_body) { Node* closure_node = graph->insertNode(graph->create(prim::Function, 1)); // it is not a real thing yet, so just say the type is None closure_node->output()->setType(NoneType::get()); Block* block = closure_node->addBlock(); { WithInsertPoint guard(block); pushFrame(block, /*starts_def=*/true); emit_body(block); popFrame(/*ends_def=*/true); } return std::make_shared(closure_node->output()); } void emitClosure(const Def& def) { // invoked once the closure block is set as the enviroment auto emit_body = [&](Block* closure_block) { emitDef( def, nullptr, closure_block); // ignore schema return, we just wont use it for now // since we never create a Method for the closure }; auto closure_value = emitClosure(emit_body); environment_stack->setSugaredVar( def.name().range(), def.name().name(), closure_value); } void emitBreak(const Break& stmt) { auto break_node = graph->create(prim::BreakStmt, {}, 0)->setSourceRange(stmt.range()); graph->insertNode(break_node); } void emitContinue(const Continue& stmt) { auto continue_node = graph->create(prim::ContinueStmt, {}, 0)->setSourceRange(stmt.range()); graph->insertNode(continue_node); } void emitReturn(const Return& stmt) { Value* result = emitExpr(stmt.expr()); TypePtr result_type = def_stack_.back().declared_return_type_; // result type is annotated, every return must convert to that type if (result_type) { // this guard skips implicit conversion from None -> Tensor for the return // type. otherwise forgetting a return a function returning a tensor will // cause a None to be converted to a tensor. if (!(result_type->isSubtypeOf(TensorType::get()) && result->type()->isSubtypeOf(NoneType::get()))) { result = tryConvertToType( stmt.range(), *graph, result_type, result, /*allow_conversions=*/true); } if (!result->type()->isSubtypeOf(result_type)) { throw ErrorReport(stmt.range()) << "Return value was annotated as having type " << result_type->python_str() << " but is actually of type " << result->type()->python_str(); } } else { result_type = def_stack_.back().merged_return_type_; if (!result_type) { result_type = result->type(); } if (!unifyTypes(result_type, result->type())) { throw ErrorReport(stmt.range()) << "Previous return statement returned a value of type " << result_type->python_str() << " but this return statement returns a value of type " << result->type()->python_str(); } } AT_ASSERT(result_type); def_stack_.back().merged_return_type_ = result_type; graph->insertNode(graph->create(prim::ReturnStmt, {result}, 0)); exit_blocks.insert(environment_stack->block()); } void emitStatements( List::const_iterator begin, List::const_iterator end) { for (; begin != end; ++begin) { auto stmt = *begin; ErrorReport::CallStack::update_pending_range(stmt.range()); switch (stmt.kind()) { case TK_IF: emitIf(If(stmt)); break; case TK_WHILE: emitWhile(While(stmt)); break; case TK_FOR: emitFor(For(stmt)); break; case TK_ASSIGN: emitAssignment(Assign(stmt)); break; case TK_AUG_ASSIGN: emitAugAssignment(AugAssign(stmt)); break; case TK_GLOBAL: for (auto ident : Global(stmt).names()) { const auto& name = Ident(ident).name(); environment_stack->setVar( ident.range(), name, graph->addInput(name)); } break; case TK_EXPR_STMT: { auto expr = ExprStmt(stmt).expr(); emitSugaredExpr(expr, 0); } break; case TK_RAISE: emitRaise(Raise(stmt).range()); break; case TK_ASSERT: emitAssert(Assert(stmt)); break; case TK_RETURN: { emitReturn(Return(stmt)); } break; case TK_CONTINUE: { emitContinue(Continue(stmt)); } break; case TK_BREAK: { emitBreak(Break(stmt)); } break; case TK_PASS: // Emit nothing for pass break; case TK_DEF: emitClosure(Def(stmt)); break; default: throw ErrorReport(stmt) << "Unrecognized statement kind " << kindToString(stmt.kind()); } } } std::shared_ptr emitSingleIfBranch( Block* b, const List& branch, const Refinements& refinements) { pushFrame(b); WithInsertPoint guard(b); insertRefinements(refinements); emitStatements(branch); return popFrame(); } Node* create(Symbol kind, const SourceRange& loc, size_t n_outputs) { return graph->create(kind, n_outputs)->setSourceRange(loc); } Value* emitTernaryIf(const TernaryIf& expr) { const auto& bool_info = findRefinements(expr.cond()); Value* cond_value = emitCond(expr.cond()); auto true_expr = [&] { insertRefinements(bool_info.true_refinements_); return emitExpr(expr.true_expr()); }; auto false_expr = [&] { insertRefinements(bool_info.false_refinements_); return emitExpr(expr.false_expr()); }; return emitIfExpr(expr.range(), cond_value, true_expr, false_expr); } Value* emitListComprehension(const ListComp& lc) { // this avoids a race condition where we would re-use the same temp name static std::atomic tmp_count{0}; const auto tmp_name = std::string("___list_acc") + std::to_string(tmp_count++); const auto list_value = emitExpr(lc.iter()); if (list_value->type()->kind() != TypeKind::ListType) { // TODO: constraining iterators to be simple lists for now // as it makes easy to get list's element type. throw ErrorReport(lc.range()) << "iterator expression is expected to be a list"; } auto elem_types = list_value->type()->containedTypes(); // TODO: users can easily change the type to (x,1) or float(x) // as in `float(x) for x in my_list_of_ints` // eventually, we would probably want to temporarily inject x // so we can evaluate the generator expression (e.g. `float(x)`) depending // on x // given `[x*2 for x in my_list]` this generates the following AST: // __list_acc = [] // for x in my_list: // __list_acc.append(x*2) const auto n = graph->insertNode( graph->createList(elem_types.at(0), at::ArrayRef{})); environment_stack->setVar(lc.range(), tmp_name, n->output()); const auto tmp_list_ident = Ident::create(lc.range(), tmp_name); const auto tmp_list_var = Var::create(lc.range(), tmp_list_ident); const auto append_ident = Ident::create(lc.range(), "append"); const auto dot_op = Select::create(lc.range(), tmp_list_var, append_ident); const auto append_args_list = List::create(lc.range(), {lc.elt()}); const auto append_attrs = List::create(lc.range(), {}); const auto apply_append = Apply::create(lc.range(), dot_op, append_args_list, append_attrs); const auto expr_stmt = ExprStmt::create(lc.range(), apply_append); const auto stmt_list = List::create(lc.range(), {expr_stmt}); const auto iters_list = List::create(lc.range(), {lc.iter()}); const auto targets_list = List::create(lc.range(), {lc.target()}); const auto for_loop = For::create(lc.range(), targets_list, iters_list, stmt_list); emitFor(for_loop); return n->output(); } // Insert subtyping refinements void insertRefinements(const Refinements& ref) { for (const auto& name_mappings : ref.mappings_) { const std::string& name = name_mappings.first; auto type = name_mappings.second.first; const auto& range = *name_mappings.second.second; Value* v = environment_stack->getVar(name, range); if (type != NoneType::get()) { Value* output = graph->insert(prim::unchecked_unwrap_optional, {v}); environment_stack->setVar(range, name, output); } // todo @eellison - revisit inserting Nones when None subtypes Optional } } Value* emitShortCircuitIf( const SourceRange& loc, const TreeRef& first_expr, const TreeRef& second_expr, bool is_or) { const auto first_bool_info = findRefinements(first_expr); Value* first_value = emitCond(Expr(first_expr)); // if the second expr in the short circuit is not evaluated, // than the first expression is False if the short circuit // is an `and` and True if the short circuit is an `or`. // `False and expr` -> False, `True or expr` -> True // // inserting it as a constant makes optimization easier Value* first_value_returned; const Refinements* first_expr_refinements; const Refinements* second_expr_refinements; // if it's an OR the first expr is emitted in the true branch // and the second expr in the false branch, if it's an AND the opposite if (is_or) { first_value_returned = graph->insertConstant(true, nullptr, loc); first_expr_refinements = &first_bool_info.true_refinements_; second_expr_refinements = &first_bool_info.false_refinements_; } else { first_value_returned = graph->insertConstant(false, nullptr, loc); first_expr_refinements = &first_bool_info.false_refinements_; second_expr_refinements = &first_bool_info.true_refinements_; } auto get_first_expr = [&] { insertRefinements(*first_expr_refinements); return first_value_returned; }; auto get_second_expr = [&] { insertRefinements(*second_expr_refinements); return emitCond(Expr(second_expr)); }; // if this is an OR, eval second expression if first expr is False // If this is an AND, eval second expression if first expr is True if (is_or) { return emitIfExpr(loc, first_value, get_first_expr, get_second_expr); } else { return emitIfExpr(loc, first_value, get_second_expr, get_first_expr); } } Value* emitIfExpr( const SourceRange& range, Value* cond_value, std::function true_expr, std::function false_expr) { Node* n = graph->insertNode(create(prim::If, range, 0)); n->addInput(cond_value); auto* true_block = n->addBlock(); auto* false_block = n->addBlock(); auto emit_if_expr = [this](Block* b, std::function expr_value) { pushFrame(b); WithInsertPoint guard(b); Value* out_val = expr_value(); b->registerOutput(out_val); popFrame(); }; emit_if_expr(true_block, std::move(true_expr)); emit_if_expr(false_block, std::move(false_expr)); auto true_type = true_block->outputs().at(0)->type(); auto false_type = false_block->outputs().at(0)->type(); auto unified = unifyTypes(true_type, false_type); if (!unified) { throw ErrorReport(range) << "if-expression's true branch has type " << true_type->python_str() << " but false branch has type " << false_type->python_str(); } // Add op outputs auto expr_value = n->addOutput()->setType(*unified); // Resulting value return expr_value; } Value* emitCond(const Expr& cond) { Value* v = emitExpr(cond); Value* out; try { auto bool_cast = environment_stack->getSugaredVar("bool", cond.range()); out = asSimple(bool_cast->call(cond.get()->range(), method, {v}, {}, 0)); } catch (...) { throw ErrorReport(cond.range()) << "Could not cast value of type " << v->type()->python_str() << " to bool"; } // cast value not response for checking output type if (!out->type()->isSubtypeOf(BoolType::get())) { throw ErrorReport(cond) << "expected a bool expression for condition but found " << out->type()->python_str(); } return out; } void emitIfElseBlocks(Value* cond_value, const If& stmt) { Node* n = graph->insertNode(create(prim::If, stmt.range(), 0)); n->addInput(cond_value); const auto bool_info = findRefinements(stmt.cond()); auto* true_block = n->addBlock(); auto* false_block = n->addBlock(); // Emit both blocks once to get the union of all mutated values auto save_true = emitSingleIfBranch( true_block, stmt.trueBranch(), bool_info.true_refinements_); auto save_false = emitSingleIfBranch( false_block, stmt.falseBranch(), bool_info.false_refinements_); bool true_exits = exit_blocks.count(true_block); bool false_exits = exit_blocks.count(false_block); if (true_exits && false_exits) { exit_blocks.insert(n->owningBlock()); } // In python, every variable assigned in an if statement escapes // the scope of the if statement (all variables are scoped to the function). // Script is a subset of python: we consider variables to be in scope // as long as there is a definition of the variable along all paths // through the if statemnent // ---- // if ...: // a = // else: // ... // ... = a # error, a is not defined along all paths // ---- // if ...: // a = // else: // a = // ... = a # OK, a is defined along all paths // ---- // a = ... // if ...: // a = // ... = a # OK, a is defined along all paths // if ...: // a = // else: // return // ... = a # OK, a is always defined // ordered set, because we want deterministic graph output std::set mutated_variables; // When we access either the true or false environment, // we need to set the insertion point so the prim::Load is inserted // into the right block. // if var is only defined in one branch save error in case it's used later for (auto& v : save_true->definedVariables()) { { WithInsertPoint insert(false_block); if (save_false->findInAnyFrame(v) || false_exits) { mutated_variables.insert(v); } else { ErrorReport error(stmt); environment_stack->setVariableTypeError(v, [=]() -> std::string { error << v << " is not defined in the false branch"; return error.what(); }); } } } for (auto& v : save_false->definedVariables()) { { WithInsertPoint insert(true_block); if (save_true->findInAnyFrame(v) || true_exits) { mutated_variables.insert(v); } else { ErrorReport error(stmt); environment_stack->setVariableTypeError(v, [=]() -> std::string { error << v << " is not defined in the true branch"; return error.what(); }); } } } // Register outputs in each block for (const auto& x : mutated_variables) { Value* tv; Value* fv; { WithInsertPoint insert(true_block); if (!true_exits) { tv = save_true->getVar(x, stmt.range()); } } { WithInsertPoint insert(false_block); if (!false_exits) { fv = save_false->getVar(x, stmt.range()); } } // if both branches exit don't emit any variables // if one branch exits then we allow the all variables in the other branch // to escape scope since they are well-defined if (true_exits && false_exits) { continue; } else if (true_exits) { tv = graph->createUninitialized(fv->type()) ->insertBefore(true_block->return_node()) ->output(); graph->createStore(x, tv)->insertBefore(true_block->return_node()); } else if (false_exits) { fv = graph->createUninitialized(tv->type()) ->insertBefore(false_block->return_node()) ->output(); graph->createStore(x, fv)->insertBefore(false_block->return_node()); } auto unified = unifyTypes(tv->type(), fv->type()); // attempt to unify the types. we allow variables to be set to different // types in each branch as long as that variable is not already in scope, // or if that variable does not get used later. here, we save the error // so that the error message will be more informative in the case that is // used later. When a is accessed in (a + 1), the error will get printed // if cond: // a = 1 // else: // a = tensor // b = a + 1 // if (!unified) { ErrorReport error(stmt); error << "Type mismatch: " << x << " is set to type " << tv->type()->python_str() << " in the true branch" << " and type " << fv->type()->python_str() << " in the false branch"; if (save_true->findInParentFrame(x) || save_false->findInParentFrame(x)) { throw error; } else { environment_stack->setVariableTypeError( x, [=]() -> std::string { return error.what(); }); continue; } } environment_stack->setType(x, *unified); } } void emitIf(const If& stmt) { // NOTE: emitIf checks on If stmt condition to see if the cond AST kind == // is/is not, for such cases we do meta programming and disable emitting the // corresponding branches Expr cond = stmt.cond(); if (cond.kind() != TK_IS && cond.kind() != TK_ISNOT) { // emit normal IF stmt for cases except TK_IS and TK_ISNOT Value* cond_value = emitCond(cond); emitIfElseBlocks(cond_value, stmt); return; } // meta programming on AST for is/is not cases and emit branches base on the // possible output of cond auto cond_op = BinOp(cond); SugaredValuePtr lhs_val = emitSugaredExpr(cond_op.lhs(), 1); SugaredValuePtr rhs_val = emitSugaredExpr(cond_op.rhs(), 1); List always_none_branch = cond.kind() == TK_IS ? stmt.trueBranch() : stmt.falseBranch(); List never_none_branch = cond.kind() == TK_IS ? stmt.falseBranch() : stmt.trueBranch(); auto lhs_none = lhs_val->isNone(); auto rhs_none = rhs_val->isNone(); // Dispatch logic (A: ALWAYS, N: NEVER, M: MAYBE): // // AA, -> emit always_none_branch // AN , NA-> emit never_none_branch // MA, MM, MN, NM, NN, AM -> emit both conditional branches if (lhs_none == ALWAYS && rhs_none == ALWAYS) { // None is/is not None: only emit the always_none_branch emitStatements(always_none_branch); } else if ( (lhs_none == ALWAYS && rhs_none == NEVER) || (lhs_none == NEVER && rhs_none == ALWAYS)) { // lhs_val/rhs_val with A/M: only emit never_none_branch emitStatements(never_none_branch); } else { // all other cases for lhs_val and rhs_val // emit the whole If stmt as usual, finish emitCond first auto lhs_range = cond_op.lhs().get()->range(); auto rhs_range = cond_op.rhs().get()->range(); auto kind = getNodeKind(cond.kind(), cond.get()->trees().size()); Value* cond_value = emitBuiltinCall( cond.get()->range(), *method.graph(), kind, c10::nullopt, {lhs_val->asValue(lhs_range, method), rhs_val->asValue(rhs_range, method)}, {}, /*required=*/true); emitIfElseBlocks(cond_value, stmt); } } // *********************** Loop Operators ************************************ // Emits a loop operator with the form: // Loop(max_trip_count) // block0(loop_counter) { // // } // block1 { // // -> (condition) // } // For loops will have an empty loop condition block with condition set to // true. In the convert to ssa pass, the loop condition will correctly // inlined. and inputs and outputs added so that the loop conforms to the // semantics specified at // https://github.com/onnx/onnx/blob/master/docs/Operators.md#Loop void emitLoopCommon( SourceRange range, const List& body, const SugaredValuePtr& iter_val, c10::optional> targets, c10::optional cond) { Value* max_trip_count_val = nullptr; if (iter_val != nullptr) { max_trip_count_val = iter_val->len(range, method); } else { max_trip_count_val = materializeConstant( std::numeric_limits::max(), *graph, range, integral_constants); } Node* n = graph->insertNode(create(prim::Loop, range, 0)); auto* body_block = n->addBlock(); { Block* condition_block = n->addBlock(); pushFrame(condition_block); Value* out; if (cond) { WithInsertPoint insert(condition_block); out = emitCond(cond.value()); } else { WithInsertPoint insert(n); out = graph->insertConstant(true, nullptr, range); } condition_block->registerOutput(out); popFrame(); } n->addInput(max_trip_count_val); Value* trip_count = body_block->addInput()->setType(IntType::get()); // Iteration num { pushFrame(body_block); WithInsertPoint guard(body_block); // if the FOR iters and targets are present, emit FOR target assignments if (iter_val != nullptr && targets) { Value* cur_elem = iter_val->getitem(range, method, trip_count); SugaredValuePtr sv = std::make_shared(cur_elem); List target_exprs = targets.value(); validateAssignLhsExpr(target_exprs, range); // if target exprs are more than 1, it means iteration unpacking on LHS // we create Tuple literal to wrap those target exprs for assignments if (target_exprs.size() > 1) { Expr tl = TupleLiteral::create(range, target_exprs); target_exprs = List::create(range, {tl}); } emitExprsAssign(target_exprs, {sv}, range, /*n_binders=*/1); } emitStatements(body); popFrame(); } } void emitFor(const For& stmt) { auto targets = stmt.targets(); auto itrs = stmt.itrs(); auto body = stmt.body(); if (stmt.itrs().size() != 1) { throw ErrorReport(stmt) << "List of iterables is not supported currently"; } // Emit loop information for builtinFunction values like range(), zip(), // enumerate() or SimpleValue like List, Tensor, Dict, etc. SugaredValuePtr sv = emitSugaredExpr(itrs[0], 1); // We will get IterableTree for builtinFunctions zip() and enumerate(), // RangeValue for range(), and SimpleValue for types like // List/Tensor/Dict/String. auto range_val = std::dynamic_pointer_cast(sv); auto siv = std::dynamic_pointer_cast(sv); auto iterable_tree = std::dynamic_pointer_cast(sv); // For SimpleValue(except Tuple) or RanveValue/IterableTree, emit common // loop if ((siv && !siv->getValue()->type()->cast()) || range_val || iterable_tree) { // looping over a dict defaults to looping over the keys in python if (siv && siv->getValue()->type()->cast()) { sv = std::make_shared( graph->insert(aten::keys, {siv->getValue()}, {}, stmt.range())); } emitLoopCommon(stmt.range(), body, sv, targets, {}); return; } // Emit or unroll the loop for Tuple or ModuleList, we choose to unroll or // emit each subelemnt for each iteration separately. This is because for // ModuleList, each module inside the list may be different types, so FOR .. // in ModuleList essentially should emit different stmts for each iteration, // which we shouldn't emit the prim::Loop node for it, the same rule applies // for the Tuple case. auto instances = sv->asTuple(stmt.range(), method); pushFrame(environment_stack->block()); for (const auto& inst : instances) { emitExprsAssign(targets, {inst}, itrs[0].range(), /*n_binders=*/1); emitStatements(body); } for (const auto& n : environment_stack->definedVariables()) { if (environment_stack->findInParentFrame(n)) { environment_stack->next->setVar( stmt.range(), n, environment_stack->getVar(n, stmt.range())); } } popFrame(); } void emitWhile(const While& stmt) { auto cond = stmt.cond(); emitLoopCommon(stmt.range(), stmt.body(), nullptr, {}, cond); } // Currently we do not support assigning exceptions to variables, // a = Exception("hi") // raise a // // We ignore the expression following raise void emitRaise(const SourceRange& loc) { const std::string exception = "Exception"; auto string_input = insertConstant(*graph, exception, nullptr, loc); graph->insert(prim::RaiseException, {string_input}, {}, loc); exit_blocks.insert(environment_stack->block()); } // emit assserions as an if branch so that assertions will reuse the // emitIfElseBlocks refining of types void emitAssert(const Assert& stmt) { Value* cond_value = emitCond(stmt.test()); List true_branch = List::create(stmt.range(), {}); List false_branch = List::create(stmt.range(), {Raise::create(stmt.range())}); auto if_stmt = If::create(stmt.range(), stmt.test(), true_branch, false_branch); emitIfElseBlocks(cond_value, if_stmt); } // Validate that the `lhs` Expr's in an assignment statement are valid. That // is: // // 1) All lhs Expr's are either Var, Tuple or Starred nodes // 2) There is at most one Starred node in the lhs Expr // 3) A Starred node can only appear when there is another non-Starred lhs // Expr. Concretely this means that `*abc = func()` is illegal. Unpacking // all outputs into a tuple is covered by `abc = func()`. bool validateAssignLhsExpr(const List& lhs, const SourceRange& r) { size_t num_normal_assign = 0; size_t num_starred = 0; for (const auto& assignee : lhs) { if (assignee.kind() == TK_VAR || assignee.kind() == TK_SUBSCRIPT || assignee.kind() == TK_TUPLE_LITERAL) { num_normal_assign++; } else if (assignee.kind() == TK_STARRED) { num_starred++; } else { throw ErrorReport(assignee) << "lhs of assignment must be a variable, " << "subscript, or starred expression"; } } if (num_starred > 1) { throw ErrorReport(r) << "Only one starred expression is allowed on the lhs"; } if (num_starred > 0 && num_normal_assign == 0) { throw ErrorReport(r) << "A Starred expression may only appear on the " << "lhs within the presence of another non-starred" << " expression"; } return num_starred; } // Get the appropriate builtin op for this augmented assignment // If the RHS is a tensor, return the corresponding ATen in-place op // If it's a list of scalars, then return the corresponding list augment op Symbol getAugOp(const AugAssign& stmt, const TypePtr& type) { if (type->cast()) { // Lists also have in-place ops. switch (stmt.aug_op()) { case '+': return aten::add_; } } bool isTensor = type->isSubtypeOf(TensorType::get()); switch (stmt.aug_op()) { case '+': return isTensor ? aten::add_ : aten::add; case '-': return isTensor ? aten::sub_ : aten::sub; case '/': return isTensor ? aten::div_ : aten::div; case '*': return isTensor ? aten::mul_ : aten::mul; default: throw ErrorReport(stmt) << "Unknown augmented assignment: " << kindToString(stmt.aug_op()); } } // Emit nodes for augmented assignments like `+=` void emitAugAssignment(const AugAssign& stmt) { switch (stmt.lhs().kind()) { case TK_VAR: { emitAugAssignmentToVar(stmt); } break; case '.': { emitAugAssignmentToSelectVar(stmt); } break; case TK_SUBSCRIPT: { emitAugAssignmentToSubscript(stmt); } break; default: throw ErrorReport(stmt.lhs()) << "unexpected expression on " << "left-hand side of augmented assignment"; } } // This will be called when there is a class param or module buffer // mutation which make the LHS of the expr be a select expression // // Example like: // class A(Module): // def __init__(): // self.register_buffer("running_var", torch.zeros(1)) // // def forward(): // self.num_batches += 1 // // In this case we will only consider the scenario that the module // buffer type is a tensor, and we emit the corresponding tensor // in place op, and throw error for other unsupported types void emitAugAssignmentToSelectVar(const AugAssign& stmt) { const auto lhs = Select(stmt.lhs()); const auto lhsSugaredVar = environment_stack->getSugaredVar(Var(lhs.value()).name()); const auto lhsValue = lhsSugaredVar->attr(lhs.range(), method, lhs.selector().name()) ->asValue(lhs.range(), method); if (lhsValue->type()->isSubtypeOf(TensorType::get())) { // for module parameter/buffer assignment, only consider tensor types, // emit the corresponding in-place op const auto rhs = NamedValue(stmt.rhs().range(), emitExpr(stmt.rhs())); const auto self = NamedValue(stmt.lhs().range(), "self", lhsValue); emitBuiltinCall( stmt.range(), *method.graph(), getAugOp(stmt, lhsValue->type()), self, {rhs}, {}, /*required=*/true); } else { throw ErrorReport(stmt.lhs()) << "left-hand side of augmented assignment to module " << "parameters/buffers can only be tensor types"; } } void emitAugAssignmentToVar(const AugAssign& stmt) { const auto lhs = Var(stmt.lhs()); const auto lhsValue = environment_stack->getSugaredVar(lhs.name()) ->asValue(lhs.range(), method); auto lhsType = lhsValue->type(); if (lhsType->isSubtypeOf(TensorType::get()) || lhsType->cast()) { // for tensors, emit the corresponding in-place op const auto rhs = NamedValue(stmt.rhs().range(), emitExpr(stmt.rhs())); const auto self = NamedValue(stmt.lhs().range(), "self", lhsValue); const auto output = emitBuiltinCall( stmt.range(), *method.graph(), getAugOp(stmt, lhsValue->type()), self, {rhs}, {}, /*required=*/true); environment_stack->setVar(lhs.range(), lhs.name().name(), output); } else { // for primitive types, desugar into a simple assignment // e.g. foo += 1 becomes foo.2 = foo + 1 Ident lhs = Var(stmt.lhs()).name(); Expr expr = BinOp::create( stmt.range(), stmt.aug_op(), Var::create(lhs.range(), lhs), stmt.rhs()); environment_stack->setVar(lhs.range(), lhs.name(), emitExpr(expr)); } } void emitAugAssignmentToSubscript(const AugAssign& stmt) { // Process the base list value const auto lhs = Subscript(stmt.lhs()); const auto sliceable = emitExpr(lhs.value()); if (sliceable->type()->isSubtypeOf(TensorType::get())) { // If it's a tensor, just fully evaluate the subscript operation and emit // an in-place assignment std::vector tensorIndices; Value* sliced; std::tie(sliced, tensorIndices) = emitIntAndSliceIndexing( lhs.range(), sliceable, lhs.subscript_exprs()); const auto slicedArg = NamedValue(stmt.lhs().range(), "self", sliced); const auto rhs = NamedValue(stmt.rhs().range(), emitExpr(stmt.rhs())); if (tensorIndices.size() == 0) { // Common case: we only tried to index with int and slices. Emit the // correct augmented assignment op to the sliced value emitBuiltinCall( stmt.range(), *method.graph(), getAugOp(stmt, sliceable->type()), slicedArg, {rhs}, {}, /*required=*/true); } else { // Special case: we tried to do "advanced indexing". Lower this expr // into `index` and `index_put_` ops with tensordices of Tensor?[] const auto indices = graph ->insertNode(graph->createList( OptionalType::ofTensor(), tensorIndices)) ->output(); const auto indexed = graph->insert(aten::index, {slicedArg, indices}, {}, stmt.range()); const auto augmented = emitBuiltinCall( stmt.range(), *method.graph(), getAugOp(stmt, sliceable->type()), indexed, {rhs}, {}, /*required=*/true); graph->insert( aten::index_put_, {slicedArg, indices, augmented}, {}, stmt.range()); } } else { // Otherwise, it should be a list. Lower this expression into: // list.set_item(get_item(idx).add_(value)) // similar to how Python handles things. const auto listType = sliceable->type()->cast(); AT_ASSERT(listType != nullptr); auto elementType = listType->getElementType(); // Get the idx to augment const auto subscriptExprs = lhs.subscript_exprs(); if (subscriptExprs.size() != 1) { throw ErrorReport(subscriptExprs) << "Sliced expression not yet supported for" << " subscripted list augmented assignment. " << "File a bug if you want this"; } const auto idxValue = emitExpr(subscriptExprs[0]); const auto listArg = NamedValue(lhs.value().range(), "list", sliceable); const auto idxArg = NamedValue(subscriptExprs.range(), "idx", idxValue); const auto valueArg = NamedValue(stmt.rhs().range(), "value", emitExpr(stmt.rhs())); const auto getItem = graph->insert(aten::__getitem__, {listArg, idxArg}, {}, stmt.range()); const auto augmentedItem = graph->insert( getAugOp(stmt, elementType), {getItem, valueArg}, {}, stmt.range()); graph->insert( aten::_set_item, {listArg, idxArg, augmentedItem}, {}, stmt.range()); } } // Emit mutating assignments like `foo[0] = bar` void emitSubscriptAssign( const SourceRange& stmtRange, const Subscript& lhs, const Expr& rhs) { emitSubscriptAssign(stmtRange, lhs, NamedValue(rhs.range(), emitExpr(rhs))); } void emitSubscriptAssign( const SourceRange& stmtRange, const Subscript& lhs, const NamedValue& rhs) { // First check the base value. auto sliceable = emitExpr(lhs.value()); // If it's a tensor, copy the RHS data into it if (sliceable->type()->isSubtypeOf(TensorType::get())) { std::vector tensorIndices; Value* sliced; // Handle multi-dimensional slicing: first emit int/slice indexing // TODO: the Python equivalent code has special-cased copy_to // broadcasting to match NumPy semantics (see PR#4853). We can't // replicate that without knowing the size of the Tensor; so really that // code should be moved into the aten function std::tie(sliced, tensorIndices) = emitIntAndSliceIndexing( lhs.range(), sliceable, lhs.subscript_exprs()); const auto slicedArg = NamedValue(lhs.range(), sliced); if (tensorIndices.size() == 0) { // Common case: we only tried to index with int and slices. Copy the // RHS into the resulting tensor. graph->insert(aten::copy_, {slicedArg, rhs}, {}, stmtRange); } else { // Special case: we tried to do "advanced indexing" with a tensor. // Dispatch to `aten::index_put_` with tensorindices of Tensor?[] const auto indices = graph ->insertNode(graph->createList( OptionalType::ofTensor(), tensorIndices)) ->output(); graph->insert( aten::index_put_, {slicedArg, indices, rhs}, {}, stmtRange); } // Otherwise, this is a list. Dispatch to aten::_set_item to both select // and assign } else { const auto subscript = lhs.subscript_exprs(); if (subscript.size() != 1 || subscript[0].kind() == TK_SLICE_EXPR) { throw ErrorReport(subscript) << "Sliced expression not yet supported for" << " subscripted list assignment. " << "File a bug if you want this"; } std::vector args; args.emplace_back(lhs.value().range(), "list", sliceable); args.emplace_back( lhs.subscript_exprs().range(), "idx", emitExpr(subscript[0])); args.push_back(rhs); graph->insert(aten::_set_item, args, {}, stmtRange); } } void emitTupleAssign(const TupleLiteral& tl, const Expr& rhs) { size_t n_binders = tl.inputs().size(); bool starred_unpack = validateAssignLhsExpr(tl.inputs(), tl.range()); if (starred_unpack) n_binders--; auto output = emitSugaredExpr(rhs, n_binders); emitTupleAssign(tl, output, rhs.range(), n_binders, starred_unpack); } void emitTupleAssign( const TupleLiteral& tl, const SugaredValuePtr& rhs_output, const SourceRange& rhs_loc, size_t n_binders, bool starred_unpack) { auto outputs = rhs_output->asTuple( rhs_loc, method, starred_unpack ? c10::nullopt : c10::optional{n_binders}); if (outputs.size() < n_binders) { throw ErrorReport(tl) << "need " << (starred_unpack ? "at least " : "") << n_binders << " values to unpack but found only " << outputs.size(); } if (outputs.size() > n_binders && !starred_unpack) { throw ErrorReport(tl) << "too many values to unpack: need " << n_binders << " but found " << outputs.size(); } emitExprsAssign(tl.inputs(), outputs, rhs_loc, n_binders); } void emitExprsAssign( const List& lhs_exprs, const at::ArrayRef outputs, const SourceRange& rhs_loc, size_t n_binders) { int i = 0; for (auto assignee : lhs_exprs) { switch (assignee.kind()) { case TK_SUBSCRIPT: emitSubscriptAssign( rhs_loc, Subscript(assignee), NamedValue(rhs_loc, outputs.at(i)->asValue(rhs_loc, method))); i++; break; case TK_VAR: environment_stack->setSugaredVar( assignee.range(), Var(assignee).name().name(), outputs.at(i)); i++; break; case TK_STARRED: { auto var = Starred(assignee).expr(); if (var.kind() != TK_VAR) { throw ErrorReport(var) << "Cannot pack a tuple into a non-variable"; } size_t n_matched = outputs.size() - n_binders; ArrayRef> outputs_ref = outputs; auto values = fmap( outputs_ref.slice(i, n_matched), [&](const std::shared_ptr& v) { return v->asValue(assignee.range(), method); }); auto tup = graph->insertNode(graph->createTuple(values))->output(); environment_stack->setVar(var.range(), Var(var).name().name(), tup); i += n_matched; } break; case TK_TUPLE_LITERAL: { // recursively emit tuple assignments on tuple literal input TupleLiteral sub_tl = TupleLiteral(assignee); size_t sub_n_binders = sub_tl.inputs().size(); bool sub_starred_unpack = validateAssignLhsExpr(sub_tl.inputs(), sub_tl.range()); if (sub_starred_unpack) sub_n_binders--; emitTupleAssign( sub_tl, outputs.at(i), rhs_loc, sub_n_binders, sub_starred_unpack); i++; } break; default: throw ErrorReport(assignee) << "unexpected expression on the left-hand side"; } } } void emitAssignment(const Assign& stmt) { if (!stmt.rhs().present()) { throw ErrorReport(stmt.range()) << "For an assignment, expected an expression on the right-hand side"; } const Expr& rhs = stmt.rhs().get(); switch (stmt.lhs().kind()) { case TK_VAR: { auto v = Var(stmt.lhs()); TypePtr type = nullptr; if (stmt.type().present()) { type = typeParser_.parseTypeFromExpr(stmt.type().get()); } environment_stack->setSugaredVar( v.range(), v.name().name(), emitSugaredExpr(rhs, 1, type)); } break; case TK_TUPLE_LITERAL: emitTupleAssign(TupleLiteral(stmt.lhs()), rhs); break; case '.': emitSelectAssign(stmt); break; case TK_SUBSCRIPT: emitSubscriptAssign(stmt.range(), Subscript(stmt.lhs()), rhs); break; default: throw ErrorReport(stmt.lhs()) << "unexpected expression on left-hand side of assignment"; } } void emitSelectAssign(const Assign& stmt) { if (!stmt.rhs().present()) { throw ErrorReport(stmt.range()) << "Expected RHS for assignment"; } const auto lhs = Select(stmt.lhs()); const auto basename = Var(lhs.value()).name(); const auto rhsValue = emitSugaredExpr(stmt.rhs().get(), 1) ->asValue(stmt.rhs().range(), method); auto userObject = environment_stack->getSugaredVar(basename); userObject->setAttr(stmt.range(), method, lhs.selector().name(), rhsValue); } NodeKind getNodeKind(int kind, int ninputs) { switch (kind) { case '+': return aten::add; case '-': return aten::sub; case TK_UNARY_MINUS: return aten::neg; case '*': return aten::mul; case TK_POW: return aten::pow; case '@': return aten::matmul; case TK_STARRED: return prim::Starred; case '/': return aten::div; case '%': return aten::remainder; case TK_NE: return aten::ne; case TK_EQ: return aten::eq; case '<': return aten::lt; case '>': return aten::gt; case TK_LE: return aten::le; case TK_GE: return aten::ge; case TK_AND: return aten::__and__; case TK_OR: return aten::__or__; case TK_IS: return aten::__is__; case TK_ISNOT: return aten::__isnot__; case TK_NOT: return aten::__not__; case TK_FLOOR_DIV: return aten::floordiv; case '&': return aten::__and__; case '|': return aten::__or__; case '^': return aten::__xor__; case TK_IN: return aten::__contains__; default: throw std::runtime_error("unknown kind " + std::to_string(kind)); } } std::string getOperatorOverload(int kind, int ninputs) { switch (kind) { case '+': return "__add__"; case '-': return "__sub__"; case TK_UNARY_MINUS: return "__neg__"; case '*': return "__mul__"; case TK_POW: return "__pow__"; case '/': return "__truediv__"; case '%': return "__mod__"; case TK_NE: return "__ne__"; case TK_EQ: return "__eq__"; case '<': return "__lt__"; case '>': return "__gt__"; case TK_LE: return "__le__"; case TK_GE: return "__ge__"; case '&': return "__and__"; case '|': return "__or__"; case '^': return "__xor__"; case TK_IN: return "__contains__"; default: throw std::runtime_error("unknown kind " + std::to_string(kind)); } } std::vector getNamedValues( const TreeList& trees, bool maybe_unpack) { std::vector values; for (const auto& tree : trees) { if (maybe_unpack && tree->kind() == TK_STARRED) { auto starred = Starred(tree); auto entries = emitSugaredExpr(starred.expr(), 1) ->asTuple(starred.range(), method); for (const auto& entry : entries) { values.emplace_back( tree->range(), entry->asValue(starred.range(), method)); } } else { values.emplace_back(tree->range(), emitExpr(Expr(tree))); } } return values; } std::vector getNamedValues( const List& trees, bool maybe_unpack) { return getNamedValues(trees.tree()->trees(), maybe_unpack); } std::vector getValues(const TreeList& trees, bool maybe_unpack) { return toValues(*graph, getNamedValues(trees, maybe_unpack)); } std::vector getValues(const List& trees, bool maybe_unpack) { return getValues(trees.tree()->trees(), maybe_unpack); } std::vector emitAttributes(const List& attributes) { return fmap(attributes, [&](const Attribute& attr) { return NamedValue( attr.range(), attr.name().name(), emitExpr(attr.value())); }); } void checkApplyExpr( Apply& apply, SourceRange& loc, size_t expected_inputs = 2) { if (apply.inputs().size() != expected_inputs) { throw ErrorReport(loc) << Var(apply.callee()).name().name() << " expected exactly " << expected_inputs << " arguments but found " << apply.inputs().size(); } if (apply.attributes().size() > 0) { throw ErrorReport(loc) << Var(apply.callee()).name().name() << " takes no keyword arguments"; } } std::shared_ptr emitApplyExpr(Apply& apply, size_t n_binders) { auto sv = emitSugaredExpr(apply.callee(), 1); auto loc = apply.callee().range(); if (auto fork_value = dynamic_cast(sv.get())) { auto& trees = apply.inputs().tree()->trees(); if (trees.size() < 1) { throw ErrorReport(loc) << "Expected at least one argument to fork()"; } auto forked = emitSugaredExpr(Expr(trees[0]), 1); TreeList sliced_trees(trees.begin() + 1, trees.end()); auto inputs = getNamedValues(sliced_trees, true); auto attributes = emitAttributes(apply.attributes()); return emitForkExpr(loc, forked, inputs, attributes); } else if (auto annotate_value = dynamic_cast(sv.get())) { checkApplyExpr(apply, loc); TypePtr type = typeParser_.parseTypeFromExpr(apply.inputs()[0]); Value* expr = tryConvertToType( apply.range(), *graph, type, emitExpr(apply.inputs()[1], type), /*allow_conversions=*/true); // This is to ensure even if user forgets to call annotate None with the // Optional wrapper type, we still generate the correct value with the // Optional type. e.g. it makes annoate(Tensor, None) to behave the same // with annotate(Optional[Tensor], None). It also maintains the backward // compatibility of exported model on Optional undefined tensor/None auto opt_type = expr->type()->cast(); bool forget_opt_annotate = opt_type && *opt_type->getElementType() == *type; if (!forget_opt_annotate && !expr->type()->isSubtypeOf(type)) { throw ErrorReport(apply.inputs()) << "expected an expression of type " << type->python_str() << " but found " << expr->type()->python_str(); } return std::make_shared(expr); } else if (auto getattr = dynamic_cast(sv.get())) { checkApplyExpr(apply, loc); auto obj = emitSugaredExpr(apply.inputs()[0], 1); auto selector = apply.inputs()[1]; if (selector.kind() != TK_STRINGLITERAL) { throw ErrorReport(loc) << "getattr's second argument must be a string literal"; } const std::string& name = StringLiteral(selector).text(); return obj->attr(apply.range(), method, name); } else if ( auto uninitialized_value = dynamic_cast(sv.get())) { checkApplyExpr(apply, loc, 1); TypePtr type = typeParser_.parseTypeFromExpr(apply.inputs()[0]); auto out = graph->insertNode(graph->createUninitialized(type)) ->setSourceRange(loc); return std::make_shared(out->output()); } else if (auto isinstance = dynamic_cast(sv.get())) { // NOTE: for `isinstance` builtin call in JIT, we only check the static // types on the inputs to evaluate, and insert the corresponding constant // node std::function isInstanceCheck = [&](Expr obj, Expr classinfo) { if (classinfo.kind() == TK_TUPLE_LITERAL) { // handle the case for recursive tuple classinfo // return true if obj is an instance of any of the types for (Expr e : TupleLiteral(classinfo).inputs()) { if (isInstanceCheck(obj, e)) { return true; } } return false; } auto type_name = typeParser_.parseBaseTypeName(classinfo); if (!type_name) { throw ErrorReport(classinfo.range()) << "type must be a type identifier"; } auto val = emitExpr(obj); // Special casing for list and tuple since isinstance(x, list) and // isinstance(x, tuple) does not accept List[int] / Tuple[int] like // subscript type annotation in python if (*type_name == "list" && val->type()->cast()) { return true; } else if (*type_name == "tuple" && val->type()->cast()) { return true; } else if (val->type()->cast()) { throw ErrorReport(loc) << "Optional isinstance check is not supported, " << "consider use is/isnot None instead"; } else { TypePtr type = typeParser_.parseTypeFromExpr(classinfo); if (val->type()->isSubtypeOf(type)) { return true; } } return false; }; checkApplyExpr(apply, loc); bool is_instance_val = isInstanceCheck(apply.inputs()[0], apply.inputs()[1]); return std::make_shared( graph->insertConstant(is_instance_val, nullptr, loc)); } else if (auto classNew = dynamic_cast(sv.get())) { if (apply.inputs().size() != 1) { throw ErrorReport(loc) << "Only one argument to __new__ allowed"; } auto arg = emitSugaredExpr(apply.inputs()[0], 1); auto class_arg = dynamic_cast(arg.get()); if (!class_arg) { throw ErrorReport(loc) << "Expected class value as argument to __new__, got " << arg->kind() << " instead"; } if (class_arg->type_ != classNew->type_) { throw ErrorReport(loc) << "Argument to __new__() must match the class " << "you are calling __new__() on. " << "Got: " << class_arg->type_->python_str() << ", expected: " << classNew->type_->python_str(); } return classNew->createObject(apply.range(), method); } else if (auto iterable = std::dynamic_pointer_cast(sv)) { return emitIterableTree(loc, apply.inputs(), iterable); } else { auto inputs = getNamedValues(apply.inputs(), true); auto attributes = emitAttributes(apply.attributes()); return sv->call(loc, method, inputs, attributes, n_binders); } } BoolInfo findRefinements(const TreeRef& tree) { switch (tree->kind()) { case TK_IS: case TK_ISNOT: { const auto& inputs = tree->trees(); if (inputs.at(0)->kind() == TK_VAR && inputs.at(1)->kind() == TK_NONE) { const std::string& var_name = Var(inputs[0]).name().name(); Refinements true_info, false_info; auto type = environment_stack->getVar(var_name, inputs[0]->range())->type(); if (auto opt_type = type->cast()) { false_info.setRefinement( var_name, TypeAndRange(opt_type->getElementType(), &tree->range())); true_info.setRefinement( var_name, TypeAndRange(NoneType::get(), &tree->range())); } if (tree->kind() == TK_IS) { return BoolInfo(true_info, false_info); } else { return BoolInfo(false_info, true_info); } } } break; case TK_NOT: { const auto& inputs = tree->trees(); auto bool_info = findRefinements(inputs[0]); return BoolInfo( bool_info.false_refinements_, bool_info.true_refinements_); } case TK_OR: case TK_AND: { const auto& inputs = tree->trees(); auto first = findRefinements(inputs[0]); auto second = findRefinements(inputs[1]); if (tree->kind() == TK_OR) { return *first.mergeOr(second); } else { return *first.mergeAnd(second); } } } return BoolInfo(); } Value* emitExpr(const Expr& tree, const TypePtr& type_hint = nullptr) { // Push the source range of a call in case compiling this function // triggers an error ErrorReport::CallStack::update_pending_range(tree.range()); return emitSugaredExpr(tree, 1, type_hint)->asValue(tree.range(), method); } NodeKind reverseComparision(NodeKind kind) { if (kind == aten::lt) { return aten::gt; } else if (kind == aten::le) { return aten::ge; } else if (kind == aten::gt) { return aten::lt; } else if (kind == aten::ge) { return aten::le; } throw std::runtime_error( "reverseComparision: unsupported NodeKind. File a bug"); } // any expression that can produce a SugaredValue is handled here // expressions that only return a single Value* are handled in emitSimpleExpr // type_hint is set if there is a type that this value is expected to be // e.g. a : List[int] = [] // or a = torch.jit.annotate(List[int], []) // the caller is responsible for checking that the result matches type_hint // emitSugaredExpr is free to ignore it. std::shared_ptr emitSugaredExpr( const Expr& tree, size_t n_binders, const TypePtr& type_hint = nullptr) { switch (tree.kind()) { case TK_VAR: return environment_stack->getSugaredVar(Var(tree).name()); case '.': { auto select = Select(tree); auto sv = emitSugaredExpr(select.value(), 1); return sv->attr(select.range(), method, select.selector().name()); } case TK_APPLY: { auto apply = Apply(tree); return emitApplyExpr(apply, n_binders); } break; default: return std::make_shared(emitSimpleExpr(tree, type_hint)); } } Value* emitNegate(const TreeRef& tree) { const auto& inputs = tree->trees(); auto named_values = getNamedValues(inputs, /*maybe_unpack=*/false); auto neg_val = asSimple(makeMagic( "__neg__", std::make_shared(aten::neg, at::nullopt)) ->call(tree->range(), method, named_values, {}, 0)); // if we emitted a aten::neg and not some other overloaded function, // then try to constantfold if (neg_val->node()->kind() != aten::neg) { return neg_val; } auto maybe_constant_input = toIValue(neg_val->node()->input()); if (!maybe_constant_input) { return neg_val; } auto op = getOperation(neg_val->node()); Stack stack; stack.push_back(*maybe_constant_input); op(stack); AT_ASSERT(stack.size() == 1); return graph->insertConstant(stack[0], nullptr, tree->range()); } // We construct the iterable tree here using the IterableTree SugaredValue, // The tree consists of SimpleValue, RangeValue or IterableValue: // For SimpleValues(List, Dict, etc) or RangeValue. We will make them as tree // leaves since we could get the loop information from len() and get_item(). // For IterableValue like zip(), enumerate(), we can model them as a // combination of leaves, and we emit a IterableTree value to record the tree // information SugaredValuePtr emitIterableTree( SourceRange& loc, const List& inputs, const std::shared_ptr& iterable) { std::shared_ptr iterable_tree = nullptr; size_t input_size = inputs.size(); // Handling different iterable values if (iterable->symbol_ == prim::range) { std::vector input_vals = getValues(inputs, /*maybe_unpack=*/true); return std::make_shared(loc, method, input_vals); } else if (iterable->symbol_ == prim::enumerate) { // enumerate(x) can be rewrite as subtrees: // IterableTree(RangeValue(0, math.inf), SimpleValue(x)) Value* start_index = nullptr; if (input_size == 0) { throw ErrorReport(loc) << "enumerate expected at least 1 arguments, got 0"; } if (input_size == 2) { start_index = emitSugaredExpr(inputs[1], 1)->asValue(loc, method); } if (input_size > 2) { throw ErrorReport(loc) << "enumerate expected at most 2 arguments, got " << input_size; } std::vector range_inputs; if (start_index != nullptr) { range_inputs.emplace_back(start_index); } Value* end = materializeConstant( std::numeric_limits::max(), *graph, loc, integral_constants); range_inputs.emplace_back(end); SugaredValuePtr range_sv = std::make_shared(loc, method, range_inputs); SugaredValuePtr expr_sv = emitSugaredExpr(inputs[0], 1); iterable_tree = std::make_shared( std::vector({range_sv, expr_sv})); } else if (iterable->symbol_ == prim::zip) { // zip(x, y) can be rewrite as subtrees: // IterableTree(IterableTree(x), IterableTree(y)) if (inputs.size() == 0) { throw ErrorReport(loc) << "zip expected at least 1 arguments, got 0"; } iterable_tree = std::make_shared(); for (Expr expr : inputs) { auto expr_sv = emitSugaredExpr(expr, 1); iterable_tree->addChild(expr_sv); } } return iterable_tree; } std::shared_ptr emitForkExpr( SourceRange loc, const std::shared_ptr& forked, at::ArrayRef inputs, at::ArrayRef attributes) { auto g = method.graph(); Node* fork_node; TypePtr out_type; fork_node = g->insertNode(method.graph()->create(prim::forkClosure, 1)) ->setSourceRange(loc); // We create a fork by emitting a closure and setting the closure output // into the fork input. If a closure doesn't already exist, we create one. { WithInsertPoint insert(fork_node); if (ClosureValue* sv = dynamic_cast(forked.get())) { Value* closure_output = sv->asValue(loc, method); Block* closure_block = closure_output->node()->blocks().at(0); TORCH_INTERNAL_ASSERT(closure_block->outputs().size() == 1); out_type = closure_block->outputs().at(0)->type(); fork_node->addInput(closure_output); } else { auto emit_closure_body = [&](Block* closure_block) { auto fn_sugared_output = forked->call(loc, method, inputs, attributes, 1); auto fn_simple_output = fn_sugared_output->asValue(loc, method); closure_block->registerOutput(fn_simple_output); out_type = fn_simple_output->type(); }; auto closure_value = emitClosure(emit_closure_body); fork_node->addInput(closure_value->asValue(loc, method)); } } Value* node_output = fork_node->output()->setType(FutureType::create(out_type)); return std::make_shared(node_output); } Value* emitSimpleExpr( const TreeRef& tree, const TypePtr& type_hint = nullptr) { switch (tree->kind()) { case TK_IS: case TK_ISNOT: case TK_FLOOR_DIV: case '@': { const auto& inputs = tree->trees(); auto kind = getNodeKind(tree->kind(), inputs.size()); auto named_values = getNamedValues(inputs, /*maybe_unpack=*/false); return emitBuiltinCall( tree->range(), *method.graph(), kind, c10::nullopt, named_values, {}, /*required=*/true); } case TK_IN: case TK_POW: case TK_NE: case TK_EQ: case '<': case '>': case TK_LE: case TK_GE: case '*': case '/': case '+': case '-': case '%': case '&': case '|': case '^': { const auto& inputs = tree->trees(); auto kind = getNodeKind(tree->kind(), inputs.size()); auto overload = getOperatorOverload(tree->kind(), inputs.size()); auto named_values = getNamedValues(inputs, /*maybe_unpack=*/false); if (tree->kind() == TK_IN) { // For `in` the arguments are in reverse order (the object being // checked is second) std::iter_swap(named_values.begin() + 0, named_values.begin() + 1); } return asSimple( makeMagic( overload, std::make_shared(kind, at::nullopt)) ->call(tree->range(), method, named_values, {}, 0)); } case TK_NOT: { Value* input = emitCond(Expr(tree->trees()[0])); return emitBuiltinCall( tree->range(), *method.graph(), aten::__not__, c10::nullopt, {input}, {}, /*required=*/true); } case TK_UNARY_MINUS: { return emitNegate(tree); } case TK_AND: case TK_OR: { const auto& inputs = tree->trees(); return emitShortCircuitIf( tree->range(), inputs[0], inputs[1], tree->kind() == TK_OR); } case TK_STARRED: { throw ErrorReport(tree) << "Unexpected starred expansion. File a bug report"; } case TK_CONST: { return emitConst(Const(tree)); } break; case TK_TRUE: { return graph->insertConstant(true, nullptr, tree->range()); } break; case TK_FALSE: { return graph->insertConstant(false, nullptr, tree->range()); } break; case TK_NONE: { // A None can be inserted even if the type_hint is not an Optional or // None (e.g. `torch.jit.annotate(Tensor, None)`) TypePtr hint = type_hint; if (hint != nullptr && !hint->isSubtypeOf(NoneType::get()) && hint->kind() != TypeKind::OptionalType) { // Implicitly wrap in an Optional if necessary hint = OptionalType::create(hint); } return graph->insertConstant(IValue(), hint, tree->range()); } break; case TK_SUBSCRIPT: { return emitSubscript(Subscript(tree)); } break; case TK_IF_EXPR: { return emitTernaryIf(TernaryIf(tree)); } break; case TK_STRINGLITERAL: { return emitStringLiteral(StringLiteral(tree)); } break; case TK_LIST_LITERAL: { auto ll = ListLiteral(tree); auto values = getValues(ll.inputs(), /*maybe_unpack=*/true); // determine the element type of the list // if we have a type hint of List[T], use T // if the list is non-empty use type_of(list[0]) // otherwise assume it is List[Tensor] TypePtr elem_type = TensorType::get(); if (type_hint && type_hint->kind() == TypeKind::ListType) { elem_type = type_hint->expect()->getElementType(); } else if (!values.empty()) { elem_type = values.at(0)->type(); } // Tensors are special because they have dymnamic properties. So any // list containing tensors should be typed with the unified typeof all // the elements. if (elem_type->isSubtypeOf(TensorType::get())) { for (const auto& value : values) { elem_type = unifyTypes(elem_type, value->type()).value(); } } for (auto v : values) { if (!v->type()->isSubtypeOf(elem_type)) { throw ErrorReport(tree) << "Lists must contain only a single type, expected: " << *elem_type << " but found " << *v->type() << " instead"; } } Value* result = graph->insertNode(graph->createList(elem_type, values))->output(); return result; } break; case TK_TUPLE_LITERAL: { auto ll = TupleLiteral(tree); auto values = getValues(ll.inputs(), /*maybe_unpack=*/true); return graph->insertNode(graph->createTuple(values))->output(); } break; case TK_DICT_LITERAL: { auto dl = DictLiteral(tree); auto key_trees = dl.key_inputs().tree()->trees(); auto value_trees = dl.value_inputs().tree()->trees(); AT_ASSERT(key_trees.size() == value_trees.size()); std::vector keys, values; for (size_t i = 0; i < key_trees.size(); ++i) { keys.push_back(emitExpr(Expr(key_trees[i]))); values.push_back(emitExpr(Expr(value_trees[i]))); } TypePtr key_type = nullptr; TypePtr value_type = nullptr; if (type_hint && type_hint->kind() == TypeKind::DictType) { auto dict_type = type_hint->expect(); key_type = dict_type->getKeyType(); value_type = dict_type->getValueType(); } else if (!keys.empty()) { key_type = keys.at(0)->type(); value_type = values.at(0)->type(); } else { key_type = StringType::get(); value_type = TensorType::get(); } AT_ASSERT(key_type != nullptr && value_type != nullptr); return graph ->insertNode(graph->createDict(key_type, value_type, keys, values)) ->output(); } break; case TK_LIST_COMP: { auto lc = ListComp(tree); return emitListComprehension(lc); } break; default: throw ErrorReport(tree) << "Cannot emit expr for: " << tree; } } Value* emitConst(const Const& c) { if (c.isFloatingPoint()) return materializeConstant( c.asFloatingPoint(), *graph, c.range(), fp_constants); else return materializeConstant( c.asIntegral(), *graph, c.range(), integral_constants); } Value* emitStringLiteral(const StringLiteral& c) { return insertConstant(*graph, c.text(), nullptr, c.range()); } // Desugars select indexing: tensor[i] -> tensor.select(dim, i) Value* emitSelect( const SourceRange& loc, Value* input, Value* dim, Value* index) { return emitBuiltinCall( loc, *graph, aten::select, c10::nullopt, {input, dim, index}, {}, true); } // Desugars slice indexing: tensor[begin:end] -> tensor.slice(dim, begin, end, // 1) Value* emitSlice( const SourceRange& loc, Value* input, Value* dim, // Only used for tensor slicing const SliceExpr& slice) { std::vector args; args.reserve(4); args.emplace_back(loc, "self", input); // XXX: If list slicing becomes more complicated or stops using // aten::slice, we should separate it from this function. if (dim) { AT_ASSERT(input->type()->isSubtypeOf(TensorType::get())); args.emplace_back(dim); } else { AT_ASSERT(!input->type()->isSubtypeOf(TensorType::get())); } args.emplace_back(loc, "begin", emitExpr(Expr(slice.startOr(0)))); const auto has_end = slice.end().present(); if (has_end) { args.emplace_back(loc, "end", emitExpr(Expr(slice.end().get()))); } if (input->type()->cast()) { auto has_step = slice.step().present(); if (has_step) { // TODO: add support for slicing tuples with a step throw ErrorReport(loc) << "Unsupported operation: slicing tuples with a step isn't supported"; } if (has_end) { return emitTupleSlice(loc, args[0], args[1], /*end*/ args[2]); } else { return emitTupleSlice(loc, args[0], args[1], c10::nullopt); } } auto step = emitExpr(Expr(slice.stepOr(1))); NamedValue step_nv = NamedValue(loc, "step", step); return emitBuiltinCall( loc, *graph, aten::slice, c10::nullopt, args, {step_nv}, true); } Value* emitUnsqueeze(const SourceRange& loc, Value* input, Value* dim_val) { return emitBuiltinCall( loc, *graph, aten::unsqueeze, c10::nullopt, {input, dim_val}, {}, true); } Value* emitIndex( const SourceRange& loc, Value* input, at::ArrayRef indices) { // NB: the index of aten::index should be a type of List[Optional[Tensor]], // this is to support the case like t[:, :, 1] where : here indicates a // None/undefined tensor(optional tensor) auto* index = graph->insertNode(graph->createList(OptionalType::ofTensor(), indices)) ->output(); return emitBuiltinCall( loc, *graph, aten::index, c10::nullopt, {input, index}, {}, true); } // Emits multidimensional slicing with int and slice indices. // Returns: // - Value*: the input after it has been indexed by int and slice indices. // - vector: A list of tensor Value* indices that have not been // applied yet. // Should be NULL at indices where sliceable (post-slicing) isn't indexed by // a tensor. std::pair> emitIntAndSliceIndexing( const SourceRange& loc, Value* sliceable, const List& subscript_exprs) { // Overall, to handle indexing (other than Tensors), we need to handle a // couple different things. For example, for x[1:3, None, 4], each of these // different index types (slice, None, and integer) result in different // number of dimensions. Slicing doesn't change the number of dimensions, // None adds a dimension, and integer removes a dimension. As these indexing // operations are applied left to right, the actual index that it's being // applied to depends on the previous operations. Ellipses indexing throws // another wrinkle. Ellipses selects any remaining unspecified dimensions. // Thus, for indexes following an ellipses, the actual index an indexing // operation is being applied to depends on the operations to the right. // Thus, we do two passes, one from left to right up until the ellipses, and // one from right to left. std::vector tensor_indices; auto insert_value_for_dim = [&](int64_t dim) { return graph->insertConstant(dim, nullptr, loc); }; std::vector dims(subscript_exprs.size()); std::vector> exprs( subscript_exprs.size(), c10::nullopt); auto handle_indexing = [&](const Expr& subscript_expr, int expr_idx, int64_t dim, bool is_reverse = false) { dims[expr_idx] = dim; if (subscript_expr.kind() == TK_SLICE_EXPR) { if (is_reverse) { return dim - 1; } else { return dim + 1; } } TypePtr type_hint = OptionalType::ofTensor(); if (subscript_expr.kind() == TK_NONE) { type_hint = NoneType::get(); } auto index = emitExpr(subscript_expr, type_hint); exprs[expr_idx] = index; if (index->type()->isSubtypeOf(NoneType::get())) { if (is_reverse) { return dim; } else { return dim + 1; } } else if (index->type() == IntType::get()) { if (is_reverse) { return dim - 1; } else { return dim; } } else if (index->type()->isSubtypeOf(OptionalType::ofTensor())) { if (is_reverse) { throw ErrorReport(loc) << "Ellipses followed by tensor indexing is currently not supported"; } else { return dim + 1; } } else { throw ErrorReport(loc) << "Unsupported operation: indexing tensor with unsupported index type '" << index->type()->python_str() << "'. Only ints, slices, and tensors are supported"; } }; size_t idx = 0; int64_t dim = 0; for (; idx < subscript_exprs.size(); idx++) { auto subscript_expr = subscript_exprs[idx]; if (subscript_expr.kind() == TK_DOTS) { break; } dim = handle_indexing(subscript_expr, idx, dim, /*is_reverse=*/false); } int64_t rdim = -1; for (size_t rev_idx = subscript_exprs.size() - 1; rev_idx > idx; rev_idx--) { auto subscript_expr = subscript_exprs[rev_idx]; if (subscript_expr.kind() == TK_DOTS) { throw ErrorReport(loc) << "An index can only have a single ellipsis ('...')"; } rdim = handle_indexing(subscript_expr, rev_idx, rdim, /*is_reverse=*/true); } for (size_t i = 0; i < exprs.size(); i++) { if (!exprs[i].has_value()) { if (subscript_exprs[i].kind() == TK_SLICE_EXPR) { sliceable = emitSlice( loc, sliceable, insert_value_for_dim(dims[i]), SliceExpr(subscript_exprs[i])); } continue; } auto expr = exprs[i].value(); if (expr->type()->isSubtypeOf(NoneType::get())) { sliceable = emitUnsqueeze(loc, sliceable, insert_value_for_dim(dims[i])); } else if (expr->type() == IntType::get()) { sliceable = emitSelect(loc, sliceable, insert_value_for_dim(dims[i]), expr); } else if (expr->type()->isSubtypeOf(OptionalType::ofTensor())) { tensor_indices.resize(dims[i] + 1); tensor_indices[dims[i]] = expr; } else { TORCH_INTERNAL_ASSERT( "Trying to process index type that we don't support."); } } // at::index takes in a List[Optional[Tensor]] where some dims can be None. // create None node with optional tensor output type and pass to at::index. for (auto& index : tensor_indices) { if (index == nullptr) { index = graph->insertNode(graph->createNone(TensorType::get()))->output(); } } return std::make_pair(sliceable, tensor_indices); } // Desugars multidim slicing into slice/select/index/unsqueeze calls. // // XXX: Errors in user code are not elegantly reported. // Let's say someone were to do the following: // @torch.jit.script // def fn(x): // return x[0, 1] // fn(torch.randn(5)) // Because we desugar this into two aten::select ops, the error message // complains about aten::select failing rather than there "not being // enough dimensions to index". // // The strategy is to slice and select the tensor for int and slices first // in one pass and then apply at::index on the result of the // slicing/selecting. Call the tensor after we've applied slice / select the // `sliced`. tensor_indices should have the same size as sliced.dim(): // - tensor_indices[i] = NULL if we should not index `sliced` at dim i // - tensor_indices[i] = t if we should index `sliced` at dim i with tensor t. Value* emitMultidimSlicing( const SourceRange& loc, Value* sliceable, const List& subscript_exprs) { if (!sliceable->type()->isSubtypeOf(TensorType::get())) { throw ErrorReport(loc) << "Unsupported operation: attempted to use multidimensional " << "indexing on a non-tensor type"; } std::vector tensor_indices; std::tie(sliceable, tensor_indices) = emitIntAndSliceIndexing(loc, sliceable, subscript_exprs); if (tensor_indices.empty()) { // XXX: Might need to at::alias this when we support mutability return sliceable; } return emitIndex(loc, sliceable, tensor_indices); } // Desugars slice syntactic sugar tensor[begin:end] -> tensor.slice(begin, // end). Value* emitBasicSlice( const SourceRange& loc, Value* sliceable, const List& subscript_exprs) { AT_ASSERT(subscript_exprs.size() == 1); AT_ASSERT(subscript_exprs[0].kind() == TK_SLICE_EXPR); auto slice_exp = SliceExpr(subscript_exprs[0]); Value* maybe_dim = nullptr; if (sliceable->type()->isSubtypeOf(TensorType::get())) { // If the sliceable object is a tensor, specify a default dimension maybe_dim = graph->insertConstant(0, nullptr, loc); } return emitSlice(loc, sliceable, maybe_dim, slice_exp); } int64_t getAdjTupleIndex( const SourceRange& loc, const TupleTypePtr& tuple_type, int64_t input_index, bool allow_out_of_bounds) { // set index to be positive to simplify logic in runtime int64_t adj_index = input_index; int64_t tuple_len = tuple_type->elements().size(); if (input_index < 0) { adj_index = tuple_len + input_index; } if (!allow_out_of_bounds && (adj_index >= tuple_len || adj_index < 0)) { throw ErrorReport(loc) << "Tuple index out of range. Tuple is length " << tuple_len << " and index is " << input_index; } return adj_index; } // When a list is marked const in a module, it gets converted to a tuple. // The result is indexing into a Tuple which contains only one type // is quite common. since indexing will likely be done in a for loop, // we do not want to invoke the overhead of converting the tuple to a list // each iter. Value* emitTupleIndex( const SourceRange& loc, Value* tuple_val, Value* idx_val) { auto tuple_typ = tuple_val->type()->cast(); auto elems = tuple_typ->elements(); TypePtr output_type; if (idx_val->type() != IntType::get()) { throw ErrorReport(loc) << "tuple index must be an integer"; } auto idx = toIValue(idx_val); if (!idx) { if (elems.size() == 0 || !convertibleToList(tuple_typ, ListType::create(elems[0]))) { throw ErrorReport(loc) << "Cannot index into a " << tuple_typ->python_str() << " with a non-integer literal because we cannot resolve the output type"; } output_type = elems[0]; } else { auto adj_index = getAdjTupleIndex( loc, tuple_typ, idx->toInt(), /*allow_out_of_bounds*/ false); output_type = elems[adj_index]; } return graph ->insertNode(graph->createTupleIndex(tuple_val, idx_val, output_type)) ->output(); } int64_t getSliceInd(Value* idx_val, const SourceRange& loc) { auto ivalue = toIValue(idx_val); if (ivalue && ivalue->isInt()) { return ivalue->to(); } else { throw ErrorReport(loc) << "tuple slice indices must be integer constants"; } } Value* emitTupleSlice( const SourceRange& loc, const NamedValue& tuple_val, const NamedValue& beg_val, const at::optional& end_val) { auto tuple_type = tuple_val.value(*graph)->type()->expect(); int64_t beg = getAdjTupleIndex( loc, tuple_type, getSliceInd(beg_val.value(*graph), loc), /*allow_out_of_bounds*/ true); int64_t end; int64_t tuple_len = tuple_type->elements().size(); if (end_val) { end = getAdjTupleIndex( loc, tuple_type, getSliceInd(end_val->value(*graph), loc), true); } else { end = tuple_len; } // slicing does not throw out of bounds errors end = std::min(std::max((int64_t)0, end), tuple_len); beg = std::min(std::max((int64_t)0, beg), tuple_len); return graph ->insertNode(graph->createTupleSlice(tuple_val.value(*graph), beg, end)) ->output(); } Value* emitSubscript(const Subscript& subscript) { const SugaredValuePtr sv = emitSugaredExpr(subscript.value(), 1); const List& subscript_exprs = subscript.subscript_exprs(); const SourceRange& range = subscript.range(); const SourceRange& val_range = subscript.value().range(); if (subscript_exprs.size() != 1) { return emitMultidimSlicing( range, sv->asValue(val_range, method), subscript_exprs); } if (subscript_exprs[0].kind() == TK_SLICE_EXPR) { return emitBasicSlice( range, sv->asValue(val_range, method), subscript_exprs); } else { // Desugars gather syntactic sugar foo[i] Value* idx = emitExpr(subscript_exprs[0]); Value* val = sv->asValue(val_range, method); AT_ASSERT(subscript_exprs.size() == 1); if (val->type()->cast()) { return emitTupleIndex(range, sv->asValue(val_range, method), idx); } else if (val->type()->isSubtypeOf(TensorType::get())) { return emitMultidimSlicing(range, val, subscript_exprs); } else { return sv->getitem(range, method, idx); } } } }; struct FunctionResolver : public Resolver { explicit FunctionResolver( const Resolver* otherResolver, const std::unordered_map& functionTable) : otherResolver_(otherResolver), functionTable_(functionTable) {} std::shared_ptr resolveValue( const std::string& name, Function& m, const SourceRange& loc) const override { auto it = functionTable_.find(name); if (it != functionTable_.end()) { return std::make_shared(it->second); } return otherResolver_->resolveValue(name, m, loc); } TypePtr resolveType(const std::string& name, const SourceRange& loc) const override { return otherResolver_->resolveType(name, loc); } private: const Resolver* otherResolver_; const std::unordered_map& functionTable_; }; CompilationUnit::CompilationUnit(const std::string& source) : CompilationUnit() { // calles the define with native resolver to generate the graph for functions define(c10::nullopt, source, nativeResolver(), nullptr); } c10::QualifiedName CompilationUnit::mangle(const c10::QualifiedName& name) const { static const std::string manglePrefix = "___torch_mangle_"; std::vector atoms = name.atoms(); // Search for an already-existing mangle namespace. // If the name is already mangled, just bump the integer. for (auto& atom : atoms) { auto pos = atom.find(manglePrefix); if (pos != std::string::npos) { std::string newAtom; newAtom.reserve(atom.size()); // Append the part of the name up to the end of the prefix newAtom.append(atom, 0, pos); newAtom.append(std::to_string(mangleIndex_++)); atom = newAtom; return QualifiedName(atoms); } } // Otherwise add a mangle namespace right before the basename TORCH_INTERNAL_ASSERT(!atoms.empty()); atoms.insert(atoms.end() - 1, manglePrefix + std::to_string(mangleIndex_++)); return QualifiedName(atoms); } std::unique_ptr CompilationUnit::define( const c10::optional& prefix, const Def& def, const ResolverPtr& resolver, const Self* self, const std::unordered_map& function_table, bool shouldMangle) const { TORCH_INTERNAL_ASSERT(resolver); auto _resolver = resolver; if (!self) { // if self is defined, then these are methods and do not go into the // global namespace otherwise, they get defined together so we add them to // the function table so the methods can see each other _resolver = std::make_shared(resolver.get(), function_table); } auto creator = [def, _resolver, self](Function& method) { // Store the function name so that it can be referenced if there is an error // while compiling this function if (self) { // Include the fully qualified name if this is a method ErrorReport::CallStack::push_function(method.qualname().qualifiedName()); } else { ErrorReport::CallStack::push_function(method.qualname().name()); } to_ir(def, _resolver, self, method); // Compilation was successful, so remove the function def info ErrorReport::CallStack::pop_function(); }; auto name = prefix ? QualifiedName(*prefix, def.name().name()) : QualifiedName(def.name().name()); if (shouldMangle) { // If `shouldMangle` is set, we should generate a unique name for this // function if there is already an existing one. if (auto fn = find_function(name)) { name = mangle(name); } } auto fn = torch::make_unique( std::move(name), std::make_shared(), creator); if (self) { // Register this as a method on `self`'s type self->getClassType()->addMethod(fn.get()); } return fn; } std::vector CompilationUnit::define( const c10::optional& prefix, const std::vector& definitions, const std::vector& resolvers, const Self* self, bool shouldMangle) { TORCH_INTERNAL_ASSERT(definitions.size() == resolvers.size()); // We need to compile `__init__` first, since it can determine what attributes // are available to other methods. So reorder the definitions accordingly. c10::optional init_idx; for (size_t i = 0; i < definitions.size(); i++) { const auto& def = definitions[i]; if (def.name().name() == "__init__") { init_idx = i; break; } } std::vector functions; std::unordered_map function_table; if (init_idx.has_value()) { // if we have an init, do it first. auto fn = define( prefix, definitions[*init_idx], resolvers[*init_idx], self, function_table, shouldMangle); const auto& name = fn->name(); function_table[name] = fn.get(); functions.push_back(fn.get()); register_function(std::move(fn)); } for (size_t i = 0; i < definitions.size(); i++) { if (init_idx.has_value() && i == *init_idx) { // skip this def since it's already been compiled continue; } auto fn = define( prefix, definitions[i], resolvers[i], self, function_table, shouldMangle); const auto& name = fn->name(); function_table[name] = fn.get(); functions.push_back(fn.get()); register_function(std::move(fn)); } for (Function* function : functions) { function->ensure_defined(); } return functions; } std::vector CompilationUnit::define( const c10::optional& prefix, const std::string& source, const ResolverPtr& resolver, const Self* self) { Parser p(std::make_shared(source, "", 1)); std::vector definitions; std::vector resolvers; while (p.lexer().cur().kind != TK_EOF) { auto def = Def(p.parseFunction(/*is_method=*/bool(self))); definitions.push_back(def); resolvers.push_back(resolver); } return define(prefix, definitions, resolvers, self); } void runCleanupPasses(std::shared_ptr& to_clean, bool convert_ssa) { // the graph including closures is converted to ssa in the first pass, // so subsequent cleanups do not need reconvert it if (convert_ssa) { ConvertToSSA(to_clean); // convert loops with an iter and body condition specified to // python-recognize while loops. we do this so they can be exported, // and run the pass early to avoid jitter. Like conversion to SSA, // it only needs to run once. CanonicalizeModifiedLoops(to_clean); } // NB ORDERING: SSA conversion has to occur before // lifting of closures and forks, this way closures are converted // to SSA while part of their original graph, and closures are ready to // be inlined into forked closures liftClosures(to_clean); inlineForkedClosures(to_clean); if (script::getInlineEverythingMode()) { Inline(*to_clean); } // remove any uses of tuples that we inserted that are not needed LowerSimpleTuples(to_clean); ConstantPooling(to_clean); // For jitter CanonicalizeOutputs(to_clean); } // we consider _N where N is a number, to be a non-meaningful name // and do not record it as a unique name. This allows python printing to // be able to export and import more consistently named graphs bool meaningfulName(const std::string& name) { if (name.size() == 0) return false; if (name[0] == '$') return false; if (name[0] != '_') return true; for (size_t i = 1; i < name.size(); ++i) { if (!isdigit(name[i])) return true; } return false; } void lambdaLiftFork(Node* fork_node) { // Fork a new graph from its orignal owning graph auto forked_graph = std::make_shared(); auto body_block = fork_node->blocks()[0]; // Make sure we capture everything in the new graph. // The uncaptured values will be added to the fork signature. std::unordered_map uncaptures_map; auto env = [&](Value* v) -> Value* { if (!uncaptures_map.count(v)) { // Capture values for both graphs uncaptures_map[v] = forked_graph->addInput()->copyMetadata(v); fork_node->addInput(v); } return uncaptures_map[v]; }; forked_graph->block()->cloneFrom(body_block, env); // Separate the subgraph and clean up the orignal one fork_node->g_(attr::Subgraph, forked_graph); fork_node->eraseBlock(0); } } // namespace script } // namespace jit } // namespace torch