# @package optimizer # Module caffe2.python.optimizer from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core class Regularizer(object): def __init__(self): pass ''' Adds regularization to train_net for given parameter. Its factor ahead of regularization is given when initialization. The param should be a BlobReference. ''' def __call__(self, train_net, param): assert isinstance(param, core.BlobReference) return self._run(train_net, param) def _run(self, train_net, param): raise Exception("Not Impelemented") class L1Norm(Regularizer): def __init__(self, reg_lambda): super(L1Norm, self).__init__() assert reg_lambda >= 0,\ 'factor ahead of regularization should be 0 or positive' self.reg_lambda = reg_lambda def _run(self, train_net, param): output_blob = train_net.NextScopedBlob(param + '_l1_regularization') train_net.LpNorm([param], [output_blob], p=1) train_net.Scale([output_blob], [output_blob], scale=self.reg_lambda) return output_blob class L2Norm(Regularizer): def __init__(self, reg_lambda): super(L2Norm, self).__init__() assert reg_lambda >= 0,\ 'factor ahead of regularization should be 0 or positive' self.reg_lambda = reg_lambda def _run(self, train_net, param): output_blob = train_net.NextScopedBlob(param + '_l2_regularization') train_net.LpNorm([param], [output_blob], p=2) train_net.Scale([output_blob], [output_blob], scale=self.reg_lambda) return output_blob