import os import contextlib import textwrap import itertools from typing import List, Dict, Optional, Iterator, Tuple, Set, Callable, Any, TypeVar, Union, Sequence, Iterable import yaml from enum import Enum from collections import OrderedDict, defaultdict import argparse import pathlib import functools import json from dataclasses import dataclass from tools.codegen.code_template import CodeTemplate from tools.codegen.model import * from tools.codegen.api.types import * import tools.codegen.api.cpp as cpp import tools.codegen.api.dispatcher as dispatcher import tools.codegen.api.native as native import tools.codegen.api.meta as meta from tools.codegen.api.translate import translate import tools.codegen.local as local from tools.codegen.selective_build.selector import SelectiveBuilder try: # use faster C loader if available from yaml import CLoader as Loader except ImportError: from yaml import Loader # type: ignore # Welcome to the ATen code generator v2! The ATen code generator is # responsible for parsing native_functions.yaml and then generating # various generated files (e.g., TypeDefault.cpp) based on the operators # defined in this file. This means that the code generator knows how to # parse function schema, and then translate this into various C++ types # and boilerplate code. # # Some things to know about this file when you modify it: # # - This file has STRICT mypy typechecking. Typecheck it with # `mypy --config mypy-strict.ini` in the root source directory # # - Most of the heavy lifting lives in external modules: # - 'model' has the data model for native_functions.yaml. The classes # in those file represent what you see when you look at # a native_functions.yaml # - 'api' has conversions for how to translate JIT schema into # the various C++ APIs that the codegen interacts with. There # are in fact THREE different C++ APIs: the public C++ API, # the dispatcher API, and the legacy disaptcher API. See each # of these respective files for more information # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # # HELPER FUNCTIONS # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Conveniently add error context to exceptions raised. Lets us # easily say that an error occurred while processing a specific # context. @contextlib.contextmanager def context(msg: str) -> Iterator[None]: try: yield except Exception as e: # TODO: this does the wrong thing with KeyError msg = textwrap.indent(msg, ' ') msg = f'{e.args[0]}\n{msg}' if e.args else msg e.args = (msg,) + e.args[1:] raise # A custom loader for YAML to let us also keep track of line numbers # of each entry in the YAML file class LineLoader(Loader): def construct_mapping(self, node, deep=False): # type: ignore mapping = super().construct_mapping(node, deep=deep) # type: ignore # Add 1 so line numbering starts at 1 mapping['__line__'] = node.start_mark.line + 1 return mapping # Parse native_functions.yaml into a sequence of NativeFunctions def parse_native_yaml(path: str) -> List[NativeFunction]: with open(path, 'r') as f: es = yaml.load(f, Loader=LineLoader) assert isinstance(es, list) rs: List[NativeFunction] = [] for e in es: assert isinstance(e.get('__line__'), int), e loc = Location(path, e['__line__']) funcs = e.get('func') with context(f'in {loc}:\n {funcs}'): rs.append(NativeFunction.from_yaml(e, loc)) return rs T = TypeVar('T') S = TypeVar('S') F = TypeVar('F', NativeFunction, StructuredNativeFunctions, Union[NativeFunction, StructuredNativeFunctions]) @contextlib.contextmanager def native_function_manager(g: Union[StructuredNativeFunctions, NativeFunction]) -> Iterator[None]: if isinstance(g, StructuredNativeFunctions): # By default, we associate all errors with structured native functions # with the out variant. In some cases, it might be better to have # a more specific place to hang things; if so, use # native_function_manager again on the inside f = g.out else: f = g with context(f'in {f.loc}:\n {f.func}'): with local.parametrize( use_c10_dispatcher=f.use_c10_dispatcher, ): yield # Given a function that operates on NativeFunction, wrap it into a new function # that sets some appropriate context managers for that native function. # YOU MUST WRAP FUNCTIONS IN THIS for calls to api modules to be sound # (you will get an error if we try to access the local variables without having # set them). def with_native_function(func: Callable[[F], T]) -> Callable[[F], T]: @functools.wraps(func) def wrapper(f: F) -> T: with native_function_manager(f): return func(f) return wrapper def method_with_native_function(func: Callable[[S, F], T]) -> Callable[[S, F], T]: @functools.wraps(func) def wrapper(slf: S, f: F) -> T: with native_function_manager(f): return func(slf, f) return wrapper # These two functions purposely return generators in analogy to map() # so that you don't mix up when you need to list() them # Map over function that may return None; omit Nones from output sequence def mapMaybe(func: Callable[[T], Optional[S]], xs: Iterable[T]) -> Iterator[S]: for x in xs: r = func(x) if r is not None: yield r # Map over function that returns sequences and cat them all together def concatMap(func: Callable[[T], Sequence[S]], xs: Iterable[T]) -> Iterator[S]: for x in xs: for r in func(x): yield r def cpp_string(s: str) -> str: """Convert a python string into a c++ string literal """ s = s.replace('\\', '\\\\') s = s.replace('"', '\\"') s = s.replace('\a', '\\a') s = s.replace('\b', '\\b') s = s.replace('\f', '\\f') s = s.replace('\n', '\\n') s = s.replace('\v', '\\v') s = s.replace('\t', '\\t') return f'"{s}"' # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # # C++ CODE GENERATION # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Most functions in this section are curried: they consist of a function # that takes some parameters (e.g., what is to be generated) which itself # returns a function that actually maps NativeFunction to the code # to be generated. This pattern makes it convenient to use map, concatMap # and similar functional combinators. # Many of these functions share logic for defining both the definition # and declaration (for example, the function signature is the same), so # we organize them into one function that takes a Target to say which # code we want. Target = Enum('Target', ('DEFINITION', 'DECLARATION', 'REGISTRATION')) # Dispatch keys that "support all backends". These codegen slightly differently # then backend specific keys. def is_generic_dispatch_key(dk: str) -> bool: return dk in {'DefaultBackend', 'Math'} # CUDA specific dispatch keys def is_cuda_dispatch_key(dk: str) -> bool: return 'CUDA' in dk # Structured kernel generation is only supported for certain key types; # otherwise use old-style def is_structured_dispatch_key(dk: str) -> bool: return dk in {'CUDA', 'CPU'} # Generates RegisterSchema.cpp. Depending on the selector, either # all schemas are registered, or only some are (in the case of # selective build) @dataclass(frozen=True) class RegisterSchema: selector: SelectiveBuilder @method_with_native_function def __call__(self, f: NativeFunction) -> Optional[str]: if not self.selector.is_native_function_selected(f): return None return f'm.def({cpp_string(str(f.func))});\n' # Generates Register{dispatch}.cpp (e.g., RegisterCPU.cpp). # # - The primary function of this file is to register all of the # implementations for the given dispatch key to the dispatcher, # so they are available for use in PyTorch. If dispatch is # None, we generate schema (def) registrations and catchall # registrations. # - The secondary function of this file is to generate a wrapper # around functions. In CPUType these wrappers do nothing # (and should be removed), but in other cases they handle # DeviceGuard. A small extra benefit of wrappers is they # are not overloaded, so they can be used in the registration # API without having to disambiguate which overload you want # (as would be the case if you directly registered native:: # functions). @dataclass(frozen=True) class RegisterDispatchKey: dispatch_key: str # TODO: Give more precise type Union[Literal[Target.DEFINITION, # Target.REGISTRATION]]; requires Literal from typing_extensions # which we don't have a dep for yet. target: Target # Selector object to determine which operators to generate # registration code for. selector: SelectiveBuilder # Whether or not we are actually code-genning for ROCm rocm: bool def __post_init__(self) -> None: assert self.target is not Target.DECLARATION @method_with_native_function def __call__(self, f: Union[StructuredNativeFunctions, NativeFunction]) -> List[str]: if isinstance(f, StructuredNativeFunctions): return self.gen_structured(f) elif isinstance(f, NativeFunction): r = self.gen_unstructured(f) return [] if r is None else [r] else: assert_never(f) def gen_structured_class_set_output(self, k: SchemaKind, parent_class: str, generate_super: bool) -> str: if generate_super: set_output_super = f"{parent_class}::set_output(output_idx, sizes, strides, options, names);" else: set_output_super = "" return f""" void set_output(int64_t output_idx, IntArrayRef sizes, IntArrayRef strides, TensorOptions options, DimnameList names) override {{ {self.gen_structured_class_set_output_body(k)} if (!names.empty()) namedinference::propagate_names(outputs_[output_idx], names); // super must happen after, so that downstream can use maybe_get_output // to retrieve the output {set_output_super} }} """ def gen_structured_class_set_output_body(self, k: SchemaKind) -> str: if self.dispatch_key == 'CUDA': maybe_set_guard = """ auto current_device = guard_.current_device(); if (C10_UNLIKELY(current_device.has_value())) { TORCH_INTERNAL_ASSERT(*current_device == options.device(), "structured kernels don't support multi-device outputs"); } else { guard_.set_device(options.device()); } """ else: maybe_set_guard = '' if k is SchemaKind.functional: if self.dispatch_key == "Meta": return """ if (strides.empty()) { outputs_[output_idx] = at::empty_meta(sizes, options); } else { TORCH_INTERNAL_ASSERT(0, "not implemented yet"); } """ else: expanded_topts = "optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), " \ "options.device_opt(), options.pinned_memory_opt()" if self.dispatch_key == "CPU": empty_impl = "at::native::empty_cpu" empty_strided_impl = "at::native::empty_strided_cpu" elif self.dispatch_key == "CUDA": empty_impl = "at::native::empty_cuda" empty_strided_impl = "at::native::empty_strided_cuda" else: raise AssertionError("unsupported dispatch key") return f""" {maybe_set_guard} if (strides.empty()) {{ outputs_[output_idx] = {empty_impl}(sizes, {expanded_topts}, options.memory_format_opt()); }} else {{ outputs_[output_idx] = {empty_strided_impl}(sizes, strides, {expanded_topts}); }} """ elif k is SchemaKind.inplace: return maybe_set_guard elif k is SchemaKind.out: return f""" {maybe_set_guard} at::native::resize_output(outputs_[output_idx], sizes); if (!strides.empty()) {{ TORCH_INTERNAL_ASSERT(!options.memory_format_opt().has_value()); at::native::as_strided_(outputs_[output_idx], sizes, strides); }} else if (options.memory_format_opt().has_value()) {{ outputs_[output_idx].get().unsafeGetTensorImpl()->empty_tensor_restride(*options.memory_format_opt()); }} """ else: assert_never(k) # returns the definition of a ctor, as well as how to construct # this class to a variable named op def gen_structured_class_ctor(self, k: SchemaKind, class_name: str) -> str: if k is SchemaKind.functional: return "" elif k is SchemaKind.inplace: # TODO: Make sure out argument is guaranteed to be self return f"{class_name}(Tensor& self) : outputs_{{std::ref(self)}} {{}}" elif k is SchemaKind.out: # TODO: Stop hardcoding out here return f"{class_name}(Tensor& out) : outputs_{{std::ref(out)}} {{}}" else: assert_never(k) def gen_structured_class( self, f: NativeFunction, k: SchemaKind, *, class_name: str, parent_class: str, generate_super: bool ) -> str: if k is SchemaKind.functional: assert len(f.func.returns) == 1, "multi-return not supported yet" output_type = "Tensor" elif k is SchemaKind.inplace: output_type = "std::reference_wrapper" elif k is SchemaKind.out: assert len(f.func.arguments.out) == 1, "multi-out structured not supported yet" output_type = "std::reference_wrapper" if self.dispatch_key == 'CUDA': if self.rocm: guard_field = 'c10::hip::OptionalHIPGuardMasqueradingAsCUDA guard_;' else: guard_field = 'c10::cuda::OptionalCUDAGuard guard_;' else: guard_field = '' return f""" struct {class_name} final : public {parent_class} {{ {self.gen_structured_class_ctor(k, class_name)} {self.gen_structured_class_set_output(k, parent_class, generate_super)} const Tensor& maybe_get_output(int64_t output_idx) override {{ return outputs_[output_idx]; }} std::array<{output_type}, {len(f.func.returns)}> outputs_; {guard_field} }}; """ def gen_structured(self, g: StructuredNativeFunctions) -> List[str]: if self.dispatch_key == 'Meta': assert self.dispatch_key not in g.out.dispatch, \ "Do not explicitly specify Meta dispatch key on structured " \ "functions, they will be automatically generated for you" elif self.dispatch_key not in g.out.dispatch: return [] elif not is_structured_dispatch_key(self.dispatch_key): return list(mapMaybe(self.gen_unstructured, g.functions())) # Inner helper function to close over g # TODO: This function has a lot of similarity with gen_unstructured. If # you edit this, you may need to also edit gen_unstructured. @with_native_function def gen_one(f: NativeFunction) -> Optional[str]: assert self.target is not Target.DECLARATION assert not f.manual_kernel_registration # TODO: put this into StructuredNativeFunctions itself functional_func = g.out.func.signature() functional_sig = DispatcherSignature.from_schema(functional_func) # TODO: is it meta or wot? Sort this out functional_exprs = ', '.join( e.expr for e in translate(functional_sig.arguments(), dispatcher.arguments(functional_func), method=False) ) if self.target is Target.REGISTRATION and not self.selector.is_native_function_selected(f): return None k = f.func.kind() sig = NativeSignature.from_schema(f.func) if self.target is Target.DEFINITION: if self.dispatch_key == 'Meta': class_name = f"structured_{meta.name(g)}_meta_{k.name}" parent_class = f"at::meta::{meta.name(g)}" else: class_name = f"structured_{g.out.dispatch[self.dispatch_key]}_{k.name}" parent_class = f"at::native::structured_{g.out.dispatch[self.dispatch_key]}" if k is SchemaKind.functional: assert len(f.func.returns) == 1, "multi-return not supported yet" out_expr = "op.outputs_[0]" ret_expr = "std::move(op.outputs_[0])" # small optimization op_init = f"{class_name} op;" elif k is SchemaKind.inplace: out_expr = "self" ret_expr = "self" op_init = f"{class_name} op(self);" elif k is SchemaKind.out: assert len(f.func.arguments.out) == 1, "multi-out structured not supported yet" out_expr = f.func.arguments.out[0].name ret_expr = out_expr op_init = f"{class_name} op({out_expr});" if self.dispatch_key == 'Meta': impl_call = "" else: impl_call = f"op.impl({functional_exprs}, {out_expr});" # For an overview of what this template code looks like, see # https://github.com/pytorch/rfcs/pull/9 return f"""\ {self.gen_structured_class( f, k, class_name=class_name, parent_class=parent_class, generate_super=g.out.structured_inherits is not None )} {sig.defn()} {{ {op_init} op.meta({functional_exprs}); {impl_call} return {ret_expr}; }} """ elif self.target is Target.REGISTRATION: dispatcher_sig = DispatcherSignature.from_schema(f.func) assert local.use_c10_dispatcher() is UseC10Dispatcher.full return f'm.impl("{f.func.name}", TORCH_FN({sig.name()}));' else: assert_never(self.target) # Silence mypy's "Missing return statement" error return None return list(mapMaybe(gen_one, g.functions())) @method_with_native_function def gen_unstructured(self, f: NativeFunction) -> Optional[str]: # for mypy type refinement; would be fixed by TODO on target assert self.target is not Target.DECLARATION if f.func.is_out_fn(): assert local.use_c10_dispatcher().dispatcher_uses_new_style(), \ ("{} takes out arguments and has to be written in the new style. " + "Please add `use_c10_dispatcher: full` to your operator in native_functions.yaml " + "and write the C++ implementation to take out arguments in the end.").format(f.func.name) if self.dispatch_key not in f.dispatch: return None if f.manual_kernel_registration: return None if self.target is Target.REGISTRATION and not self.selector.is_native_function_selected(f): return None name = native.name(f.func) returns_type = native.returns_type(f.func.returns) args = native.arguments(f.func) args_str = ', '.join(a.defn() for a in args) if self.target is Target.DEFINITION: impl_name = f"at::native::{f.dispatch[self.dispatch_key]}" args_exprs_str = ', '.join(a.name for a in args) return_kw = " return " cuda_guard = "" if is_generic_dispatch_key(self.dispatch_key) or is_cuda_dispatch_key(self.dispatch_key): self_arg = [f.func.arguments.self_arg.argument] if f.func.arguments.self_arg is not None else [] # There is precedence for which argument we use to do # device guard. This describes the precedence order. candidate_args = itertools.chain( self_arg, f.func.arguments.out, f.func.arguments.flat_positional ) # Only tensor like arguments are eligible device_of = next((f'{a.name}' for a in candidate_args if a.type.is_tensor_like()), None) has_tensor_options = any(isinstance(a.argument, TensorOptionsArguments) for a in args) if local.use_c10_dispatcher() == UseC10Dispatcher.full: cuda_guard_from_tensor_options = """\ const DeviceGuard device_guard(device_or_default(device)); """ else: assert local.use_c10_dispatcher() in [UseC10Dispatcher.with_codegenerated_unboxing_wrapper, UseC10Dispatcher.hacky_wrapper_for_legacy_signatures] cuda_guard_from_tensor_options = """\ const DeviceGuard device_guard(options.device()); """ # TODO: There is probably a simpler version of this that # works just as well. if f.device_guard and is_generic_dispatch_key(self.dispatch_key) and has_tensor_options: cuda_guard = cuda_guard_from_tensor_options elif f.device_guard and is_cuda_dispatch_key(self.dispatch_key) and has_tensor_options: cuda_guard = f"""\ globalContext().lazyInitCUDA(); {cuda_guard_from_tensor_options} """ elif f.device_guard and device_of is not None: cuda_guard = f"""\ const OptionalDeviceGuard device_guard(device_of({device_of})); """ else: cuda_guard = """\ // DeviceGuard omitted """ return f"""\ {returns_type} {name}({args_str}) {{ {cuda_guard}{return_kw}{impl_name}({args_exprs_str}); }} """ elif self.target is Target.REGISTRATION: if f.manual_kernel_registration: return None else: dispatcher_sig = DispatcherSignature.from_schema(f.func) # Figure out which signature the function is if local.use_c10_dispatcher() is UseC10Dispatcher.full: payload = f"TORCH_FN({name})" elif local.use_c10_dispatcher() is UseC10Dispatcher.hacky_wrapper_for_legacy_signatures: payload = f""" c10::impl::hacky_wrapper_for_legacy_signatures< {dispatcher_sig.type()}, {len(f.func.arguments.out)} >(TORCH_FN({name})) """ else: assert local.use_c10_dispatcher() is UseC10Dispatcher.with_codegenerated_unboxing_wrapper payload = f"torch::CppFunction::makeUnboxedOnly(&{name})" return f'm.impl("{f.func.name}",\n{payload});\n' else: assert_never(self.target) # Generates Function.cpp and Function.h. These files provide the # functional public C++ API, and the scaffolding to call into # the dispatcher from these functions. See also compute_tensor_method. @dataclass(frozen=True) class ComputeFunction: target: Target @method_with_native_function def __call__(self, f: NativeFunction) -> Optional[str]: if Variant.function not in f.variants: return None name = cpp.name(f.func) sig_group = CppSignatureGroup.from_native_function(f, method=False, fallback_binding=f.manual_cpp_binding) if self.target is Target.DECLARATION: result = f"TORCH_API {sig_group.signature.decl()};\n" if sig_group.faithful_signature is not None: result += f"TORCH_API {sig_group.faithful_signature.decl()};\n" return result assert self.target is Target.DEFINITION def generate_defn(faithful: bool) -> str: dispatcher_sig = DispatcherSignature.from_schema(f.func) if faithful and sig_group.faithful_signature is not None: sig = sig_group.faithful_signature else: sig = sig_group.signature dispatcher_exprs = translate(sig.arguments(), dispatcher_sig.arguments()) dispatcher_exprs_str = ', '.join(a.expr for a in dispatcher_exprs) return f""" // aten::{f.func} {sig.defn()} {{ static auto op = c10::Dispatcher::singleton() .findSchemaOrThrow("aten::{f.func.name.name}", "{f.func.name.overload_name}") .typed<{dispatcher_sig.type()}>(); return op.call({dispatcher_exprs_str}); }} """ result = generate_defn(sig_group.faithful_signature is None) if sig_group.faithful_signature is not None: result += generate_defn(True) return result # Generates TensorBody.h (sic) and TensorMethods.cpp. These files provide the # object-oriented (method-based) public C++ API, and the scaffolding to call into # the dispatcher from these functions. See also compute_function. @dataclass(frozen=True) class ComputeTensorMethod: target: Target @method_with_native_function def __call__(self, f: NativeFunction) -> Optional[str]: if Variant.method not in f.variants: return None assert not f.func.is_out_fn() assert f.func.arguments.self_arg is not None name = cpp.name(f.func) sig_group = CppSignatureGroup.from_native_function(f, method=True, fallback_binding=f.manual_cpp_binding) if self.target is Target.DECLARATION: result = f"{sig_group.signature.decl()} const;\n" if sig_group.faithful_signature is not None: result += f"{sig_group.faithful_signature.decl()} const;\n" return result assert self.target is Target.DEFINITION def generate_defn(faithful: bool) -> str: dispatcher_sig = DispatcherSignature.from_schema(f.func) if faithful: sig = sig_group.faithful_signature assert sig is not None else: sig = sig_group.signature dispatcher_exprs = translate(sig.arguments(), dispatcher_sig.arguments(), method=True) dispatcher_exprs_str = ', '.join(a.expr for a in dispatcher_exprs) return f""" // aten::{f.func} {sig.defn(prefix="Tensor::")} const {{ static auto op = c10::Dispatcher::singleton() .findSchemaOrThrow("aten::{f.func.name.name}", "{f.func.name.overload_name}") .typed<{dispatcher_sig.type()}>(); return op.call({dispatcher_exprs_str}); }} """ result = generate_defn(faithful=False) if sig_group.faithful_signature is not None: result += generate_defn(faithful=True) return result # Generates ATenOpList.cpp, a runtime accessible list of all aten # operators. # TODO: This was historically used to help some JIT interop code # figure out whether or not to treat aten namespace'd operators # one way or another, we should reevaluate if this is actually needed. @with_native_function def compute_aten_op(f: NativeFunction) -> str: return f'{{"aten::{f.func.name.name}", "{f.func.name.overload_name}"}},' # Generates NativeFunctions.h, a list of forward declarations of all # actual kernel definitions we keep in aten/src/ATen/native/ @with_native_function def compute_native_function_declaration(g: Union[StructuredNativeFunctions, NativeFunction]) -> List[str]: if isinstance(g, StructuredNativeFunctions): # only out has dispatch meta_name = meta.name(g) rs = [] seen: Set[Any] = set() out_args = native.arguments(g.out.func) for k, n in g.out.dispatch.items(): if n in seen: continue if not is_structured_dispatch_key(k): continue seen.add(n) rs.append(f"""\ struct TORCH_API structured_{n} : public at::meta::{meta_name} {{ void impl({', '.join(a.decl() for a in out_args)}); }}; """) seen = set() for f in g.functions(): returns_type = native.returns_type(f.func.returns) args = native.arguments(f.func) for k, n in f.dispatch.items(): if n in seen: continue if is_structured_dispatch_key(k): continue seen.add(n) args_str = ', '.join(a.decl() for a in args) rs.append(f"TORCH_API {returns_type} {n}({args_str});") return rs else: f = g ns = list(f.dispatch.values()) rs = [] # Sometimes a function name shows up multiple times; only generate # it once! seen = set() for n in ns: if n in seen: continue if "legacy::" in n: continue seen.add(n) returns_type = native.returns_type(f.func.returns) args = native.arguments(f.func) rs.append(f"TORCH_API {returns_type} {n}({', '.join(a.decl() for a in args)});") return rs def compute_meta_function_declaration(g: StructuredNativeFunctions) -> str: with native_function_manager(g.out): sig = g.signature() name = meta.name(g) args = native.arguments(sig) args_str = ', '.join(a.decl() for a in args) parent_class = g.out.structured_inherits if parent_class is None: parent_class = "at::impl::MetaBase" return f"""\ struct TORCH_API {name} : public {parent_class} {{ void meta({args_str}); }}; """ # Generates RegisterBackendSelect.cpp, a series of kernels which provide # specialized computation of dispatch key for operator signatures which cannot # be easily done automatically using templating. @dataclass(frozen=True) class ComputeBackendSelect: target: Target @method_with_native_function def __call__(self, f: NativeFunction) -> Optional[str]: if str(f.func.name.name).endswith('_like') or str(f.func.name.name).startswith('new_'): return None name = native.name(f.func) native_sig = NativeSignature.from_schema(f.func) if not any(isinstance(a.argument, TensorOptionsArguments) for a in native_sig.arguments()): return None native_tensor_args = [ a for a in native_sig.arguments() if isinstance(a.argument, Argument) and a.argument.type.is_tensor_like() ] dispatcher_sig = DispatcherSignature.from_schema(f.func) sig: Union[NativeSignature, DispatcherSignature] if local.use_c10_dispatcher().dispatcher_uses_new_style(): sig = dispatcher_sig dispatcher_exprs = dispatcher_sig.exprs() dispatch_key = "c10::computeDispatchKey(dtype, layout, device)" else: sig = native_sig dispatcher_exprs = native_sig.dispatcher_exprs() dispatch_key = "options.computeDispatchKey()" if self.target is Target.DEFINITION: # I don't think there's actually a good reason to generate # these two cases differently # The first case could probably be improved though- it calls dispatchTypeId(), # which looks at TLS dispatch keys- there should not be any by the time we reach backend select. if native_tensor_args: tensor_args = ', '.join(a.name for a in native_tensor_args) compute_dk = f"""\ DispatchKeySet _dk_set = c10::DispatchKeySet({dispatch_key}) | c10::detail::multi_dispatch_key_set({tensor_args}); DispatchKeySet _dk_mask = c10::DispatchKeySet(DispatchKeySet::FULL_AFTER, DispatchKey::BackendSelect); DispatchKey _dk = c10::impl::dispatchTypeId(_dk_set, _dk_mask);""" else: compute_dk = f"DispatchKey _dk = {dispatch_key};" return f"""\ // aten::{f.func} {sig.defn(name)} {{ static auto op = c10::Dispatcher::singleton() .findSchemaOrThrow("aten::{f.func.name.name}", "{f.func.name.overload_name}") .typed<{dispatcher_sig.type()}>(); {compute_dk} return op.callWithDispatchKey(_dk, {', '.join(a.expr for a in dispatcher_exprs)}); }} """ elif self.target is Target.REGISTRATION: if local.use_c10_dispatcher().dispatcher_uses_new_style(): return f"""m.impl("aten::{f.func.name}", TORCH_FN({name}));""" else: assert local.use_c10_dispatcher() is UseC10Dispatcher.with_codegenerated_unboxing_wrapper return f"""m.impl_UNBOXED("aten::{f.func.name}", {name});""" elif self.target is Target.DECLARATION: raise AssertionError() else: assert_never(self.target) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # # YAML CODE GENERATION # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # def dict_representer(dumper: Any, data: Any) -> Any: return dumper.represent_dict(data.items()) def format_yaml(data: object) -> str: noalias_dumper = yaml.dumper.SafeDumper noalias_dumper.ignore_aliases = lambda self, data: True # type: ignore # Support serializing OrderedDict noalias_dumper.add_representer(OrderedDict, dict_representer) # type: ignore # Some yaml parsers (e.g. Haskell's) don't understand line breaks. # width=float('Inf') turns off optional line breaks and improves # the portability of the outputted yaml. return yaml.dump(data, default_flow_style=False, Dumper=noalias_dumper, width=float('Inf')) # type: ignore # For some reason, some defaults we write to YAML are written as native # YAML objects, rather than doing them uniformly as strings. This # function detects those cases and converts them into native Python # objects. def pythonify_default(s: str) -> object: if s == 'true': return True elif s == 'false': return False try: return int(s) except ValueError: try: return float(s) except ValueError: return s # What is a dynamic type? Over time, the semantic meaning of # dynamic type has degraded to meaninglessness (in the old days, # it captured dtype-ness of types, but that has gone away with # the removal of TH). These days, it's mostly the same thing as # the C++ API argument type, except that Tensor and Tensor? # arguments simply present as Tensor. # # TODO: Get rid of dynamic_type, after getting tools/autograd # to use the new codegen framework def dynamic_type(t: Type) -> str: if isinstance(t, OptionalType): return dynamic_type(t.elem) # Note we don't use t.is_tensor_like() here because it would # also include Tensor[] if str(t) == 'Tensor': return 'Tensor' return cpp.argumenttype_type(t, mutable=False, binds='__placeholder__').cpp_type() def compute_method_of_yaml(variants: Set[Variant]) -> List[str]: # This is written out explicitly to ensure that Tensor and # namespace are put into the list in the right order method_of = ['Type'] if Variant.method in variants: method_of.append('Tensor') if Variant.function in variants: method_of.append('namespace') return method_of def compute_returns_yaml(f: NativeFunction) -> Tuple[List[Dict[str, str]], Dict[str, str]]: # Note [name and field_name] # ~~~~~~~~~~~~~~~~~~~~~~~~~~ # To understand name_to_field_name, we must first talk about this # schema: # # lstsq.X(Tensor self, Tensor A, *, Tensor(a!) X, Tensor(b!) qr) -> (Tensor(a!) solution, Tensor(b!) QR) # # There is something very odd about this schema: it is an out # variant of the function (that is to say, it will convert into # at::lstsq_out() in the C++ API), but the names of the output # return arguments don't match the keyword argument names of # the inputs. It TURNS OUT that in this situation, the historical # Declarations.yaml we want to output is this (abbreviated to # only show relevant fields): # # arguments: # ... # - field_name: solution # name: X # - field_name: QR # name: qr # ... # # returns: # - field_name: solution # name: X # - field_name: QR # name: qr # # The name of the return fields is stored in 'field_name', and the # name of the arguments is stored in 'name'. So when we process # arguments, we need a way to get at the corresponding return. At # the moment, this is most conveniently done by constructing a # mapping from name (the argument concept) to field_name (the # return concept) while processing return arguments, since we don't # directly maintain this correspondence in the modeling of function # schema itself. # # See also https://github.com/pytorch/pytorch/issues/43114 name_to_field_name: Dict[str, str] = {} # Compute the returns field of the YAML entry names = cpp.return_names(f) returns = [] for i, (r, name) in enumerate(zip(f.func.returns, names)): ret = { 'dynamic_type': dynamic_type(r.type), 'name': name, 'type': cpp.return_type(r), } if r.name: # See Note [name and field_name] ret['field_name'] = r.name if f.func.is_out_fn(): name_to_field_name[f.func.arguments.out[i].name] = r.name returns.append(ret) return returns, name_to_field_name # arguments in yaml roughly corresponds to the public C++ API def compute_cpp_argument_yaml(cpp_a: Binding, *, schema_order: bool, kwarg_only_set: Set[str], out_arg_set: Set[str], name_to_field_name: Dict[str, str]) -> object: if isinstance(cpp_a.argument, TensorOptionsArguments): arg: Dict[str, object] = { 'annotation': None, 'dynamic_type': 'TensorOptions', 'is_nullable': False, 'name': cpp_a.name, 'type': cpp_a.type, 'kwarg_only': True, } if cpp_a.default is not None: arg['default'] = cpp_a.default return arg elif isinstance(cpp_a.argument, SelfArgument): raise AssertionError() elif isinstance(cpp_a.argument, Argument): return compute_argument_yaml( cpp_a.argument, schema_order=schema_order, kwarg_only_set=kwarg_only_set, out_arg_set=out_arg_set, name_to_field_name=name_to_field_name) def compute_argument_yaml(a: Argument, *, schema_order: bool, kwarg_only_set: Set[str], out_arg_set: Set[str], name_to_field_name: Dict[str, str]) -> object: arg: Dict[str, object] = { 'annotation': str(a.annotation) if a.annotation else None, 'dynamic_type': dynamic_type(a.type), 'is_nullable': a.type.is_nullable(), 'name': a.name, 'type': cpp.argument_type(a, binds="__placeholder__").cpp_type(), } if a.default is not None: arg['default'] = pythonify_default(cpp.default_expr(a.default, a.type)) if a.name in kwarg_only_set: arg['kwarg_only'] = True if a.name in out_arg_set: arg['output'] = True arg['allocate'] = True # See Note [name and field_name] if a.name in name_to_field_name: arg['field_name'] = name_to_field_name[a.name] # Historically, booleans don't get their size recorded, because it # is already built into the cpp type (e.g., std::array) l = a.type.is_list_like() if l is not None and l.size is not None and str(l.elem) != 'bool': arg['size'] = l.size return arg @with_native_function def compute_declaration_yaml(f: NativeFunction) -> object: returns, name_to_field_name = compute_returns_yaml(f) # These sets are used to conveniently test if an argument is a # kwarg-only or out argument kwarg_only_set = set(a.name for a in f.func.arguments.flat_kwarg_only) out_arg_set = set(a.name for a in f.func.arguments.out) sig_group = CppSignatureGroup.from_native_function(f, method=False, fallback_binding=False) cpp_args = sig_group.signature.arguments() arguments = [ compute_cpp_argument_yaml( cpp_a, schema_order=False, kwarg_only_set=kwarg_only_set, out_arg_set=out_arg_set, name_to_field_name=name_to_field_name) for cpp_a in cpp_args ] schema_order_jit_arguments = list(f.func.schema_order_arguments()) schema_order_arguments = [ compute_argument_yaml( a, schema_order=True, kwarg_only_set=kwarg_only_set, out_arg_set=out_arg_set, name_to_field_name=name_to_field_name) for a in schema_order_jit_arguments ] cpp_schema_order_types = [ # NB: method here doesn't matter r.type for a in schema_order_jit_arguments for r in cpp.argument( a, method=False, cpp_no_default_args=set(), faithful=False, has_tensor_options=False) ] cpp_returns = cpp.returns_type(f.func.returns) schema_order_cpp_signature = f"{cpp_returns} ({', '.join(cpp_schema_order_types)})" is_factory_method = any(isinstance(a.argument, TensorOptionsArguments) for a in cpp_args) \ and Variant.method not in f.variants return OrderedDict([ ('name', cpp.name(f.func)), ('operator_name', str(f.func.name.name)), ('overload_name', str(f.func.name.overload_name)), ('use_c10_dispatcher', f.use_c10_dispatcher.name), ('manual_kernel_registration', f.manual_kernel_registration), ('category_override', f.category_override if f.category_override is not None else ''), ('matches_jit_signature', True), ('schema_string', f'aten::{f.func}'), ('arguments', arguments), ('schema_order_cpp_signature', schema_order_cpp_signature), ('schema_order_arguments', schema_order_arguments), ('method_of', compute_method_of_yaml(f.variants)), ('mode', 'native'), ('python_module', '' if f.python_module is None else f.python_module), ('returns', returns), ('inplace', f.func.name.name.inplace), ('is_factory_method', is_factory_method), ('abstract', f.is_abstract), ('device_guard', f.device_guard), ('with_gil', False), ('deprecated', False), ('has_math_kernel', 'Math' in f.dispatch), ]) @with_native_function def compute_registration_declarations(f: NativeFunction) -> str: name = dispatcher.name(f.func) returns_type = dispatcher.returns_type(f.func.returns) args = dispatcher.arguments(f.func) args_str = ', '.join(a.no_default().decl() for a in args) comment_data : Dict[str, str] = { 'schema': f'aten::{f.func}', # TODO: What exactly is the semantics of the 'dispatch' field? 'dispatch': str(f.dispatch.keys() != {'Math'}), 'default': str(any(is_generic_dispatch_key(k) for k in f.dispatch)) } return f"""{returns_type} {name}({args_str}); // {json.dumps(comment_data)} """ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # # RUN IT ALL # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # @functools.lru_cache(maxsize=None) def _read_template(template_fn: str) -> CodeTemplate: return CodeTemplate.from_file(template_fn) # A small abstraction for writing out generated files and keeping track # of what files have been written (so you can write out a list of output # files) class FileManager: install_dir: str template_dir: str dry_run: bool filenames: Set[str] def __init__(self, install_dir: str, template_dir: str, dry_run: bool) -> None: self.install_dir = install_dir self.template_dir = template_dir self.filenames = set() self.dry_run = dry_run def _write_if_changed(self, filename: str, contents: str) -> None: old_contents: Optional[str] try: with open(filename, 'r') as f: old_contents = f.read() except IOError: old_contents = None if contents != old_contents: with open(filename, 'w') as f: f.write(contents) def write_with_template(self, filename: str, template_fn: str, env_callable: Callable[[], Union[str, Dict[str, object]]]) -> None: filename = '{}/{}'.format(self.install_dir, filename) assert filename not in self.filenames, "duplicate file write {filename}" self.filenames.add(filename) if not self.dry_run: env = env_callable() if isinstance(env, dict): # TODO: Update the comment reference to the correct location if 'generated_comment' not in env: comment = "@" + "generated by aten/src/ATen/gen.py" comment += " from {}".format(os.path.basename(template_fn)) env['generated_comment'] = comment template = _read_template(os.path.join(self.template_dir, template_fn)) self._write_if_changed(filename, template.substitute(env)) elif isinstance(env, str): self._write_if_changed(filename, env) else: assert_never(env) def write(self, filename: str, env_callable: Callable[[], Union[str, Union[str, Dict[str, object]]]]) -> None: self.write_with_template(filename, filename, env_callable) def write_outputs(self, filename: str) -> None: """Write a file containing the list of all outputs which are generated by this script.""" self._write_if_changed( filename, ''.join(name + ";" for name in sorted(self.filenames))) def get_custom_build_selector( provided_op_registration_allowlist: Optional[List[str]], op_selection_yaml_path: Optional[str]) -> SelectiveBuilder: assert not ( provided_op_registration_allowlist is not None and op_selection_yaml_path is not None), ( "Both provided_op_registration_allowlist and " + "op_selection_yaml_path can NOT be provided at the " + "same time.") op_registration_allowlist: Optional[Set[str]] = None if provided_op_registration_allowlist is not None: op_registration_allowlist = set(provided_op_registration_allowlist) if op_registration_allowlist is not None: selector = SelectiveBuilder.from_legacy_op_registration_allow_list( op_registration_allowlist, True, False, ) elif op_selection_yaml_path is not None: selector = SelectiveBuilder.from_yaml_path(op_selection_yaml_path) else: selector = SelectiveBuilder.get_nop_selector() return selector def main() -> None: parser = argparse.ArgumentParser(description='Generate ATen source files') parser.add_argument( '-s', '--source-path', help='path to source directory for ATen', default='aten/src/ATen') parser.add_argument( '-o', '--output-dependencies', help='output a list of dependencies into the given file and exit') parser.add_argument( '-d', '--install_dir', help='output directory', default='build/aten/src/ATen') parser.add_argument( '--rocm', action='store_true', help='reinterpret CUDA as ROCm/HIP and adjust filepaths accordingly') # TODO: --op_registration_whitelist will be removed when all call-sites # for gen.py are moved over to using the operator YAML file for mobile # custom build. parser.add_argument( '--op_registration_whitelist', nargs='*', help='filter op registrations by the whitelist (if set); ' 'each item is `namespace`::`operator name` without overload name; ' 'e.g.: aten::empty aten::conv2d ...') parser.add_argument( '--op_selection_yaml_path', help='Provide a path to the operator selection (for custom build) YAML ' 'that contains the information about the set of selected operators ' 'and their categories (training, ...). Each operator is either a ' 'full operator name with overload or just a bare operator name. ' 'The operator names also contain the namespace prefix (e.g. aten::)') parser.add_argument( '--backend_whitelist', nargs='*', help='filter dispatch backend by the whitelist (if set), ' 'e.g.: CPU CUDA QuantizedCPU ...') parser.add_argument( '--force_schema_registration', action='store_true', help='force it to generate schema-only registrations for all ops, including' 'those that are not listed on --op_registration_whitelist') options = parser.parse_args() selector = get_custom_build_selector( options.op_registration_whitelist, options.op_selection_yaml_path, ) native_functions = parse_native_yaml(os.path.join(options.source_path, 'native/native_functions.yaml')) pre_grouped_native_functions: Dict[FunctionSchema, Dict[SchemaKind, NativeFunction]] pre_grouped_native_functions = defaultdict(dict) for f in native_functions: d = pre_grouped_native_functions[f.func.signature()] assert f.func.kind() not in d d[f.func.kind()] = f def flatten_pre_group(d: Dict[SchemaKind, NativeFunction]) -> Sequence[Union[NativeFunction, StructuredNativeFunctions]]: r = StructuredNativeFunctions.from_dict(d) if r is None: return list(d.values()) else: return [r] # TODO: how come ValuesView isn't a Sequence lol grouped_native_functions = list(concatMap(flatten_pre_group, list(pre_grouped_native_functions.values()))) structured_native_functions = [g for g in grouped_native_functions if isinstance(g, StructuredNativeFunctions)] template_dir = os.path.join(options.source_path, "templates") # NB: It is mandatory to NOT use os.path.join here, as the install directory # will eventually be ingested by cmake, which does not respect Windows style # path slashes. If you switch this to use os.path.join, you'll get an error # like: # # Syntax error in cmake code when parsing string # # C:/Jenkins/workspace/pytorch-builds/pytorch-win-ws2016-cuda9-cudnn7-py3-build/build/aten/src/ATen\core/TensorMethods.h # # Invalid character escape '\c'. core_install_dir = f'{options.install_dir}/core' pathlib.Path(core_install_dir).mkdir(parents=True, exist_ok=True) def make_file_manager(install_dir: str) -> FileManager: return FileManager(install_dir=install_dir, template_dir=template_dir, dry_run=options.output_dependencies) core_fm = make_file_manager(core_install_dir) cpu_fm = make_file_manager(options.install_dir) cuda_fm = make_file_manager(options.install_dir) extra_cuda_headers = '''\ #include #include #include #include ''' if options.rocm: extra_cuda_headers = '''\ #include #include #include #include ''' # NB: substrings in these dispatch keys matter, we do tests to see if # a key contains, e.g., CUDA to classify it as a CUDA backend dispatch_keys = [ "CPU", "SparseCPU", "MkldnnCPU", "CUDA", "SparseCUDA", "QuantizedCPU", "QuantizedCUDA", "Math", "DefaultBackend", # Meta is a magic key: it is automatically generated for structured # kernels "Meta", ] if options.backend_whitelist: dispatch_keys = [k for k in dispatch_keys if is_generic_dispatch_key(k) or k in options.backend_whitelist] for dispatch_key in dispatch_keys: cpp_template = 'RegisterDispatchKey.cpp' fm = cuda_fm if is_cuda_dispatch_key(dispatch_key) else cpu_fm fm.write_with_template(f'Register{dispatch_key}.cpp', cpp_template, lambda: { 'extra_cuda_headers': extra_cuda_headers if is_cuda_dispatch_key(dispatch_key) else '', 'legacy_th_headers': '#include ' if dispatch_key == "CPU" else '#include ' if dispatch_key == "CUDA" else '', 'DispatchKey': dispatch_key, 'dispatch_definitions': list(concatMap( RegisterDispatchKey(dispatch_key, Target.DEFINITION, selector, rocm=options.rocm), grouped_native_functions )), 'dispatch_registrations': list(concatMap( RegisterDispatchKey(dispatch_key, Target.REGISTRATION, selector, rocm=options.rocm), grouped_native_functions )), }) del fm # BackendSelect is generated specially cpu_fm.write('RegisterBackendSelect.cpp', lambda: { 'backend_select_method_definitions': list(mapMaybe(ComputeBackendSelect(Target.DEFINITION), native_functions)), 'backend_select_function_registrations': list(mapMaybe(ComputeBackendSelect(Target.REGISTRATION), native_functions)), }) cpu_fm.write('MetaFunctions.h', lambda: { 'declarations': list(map(compute_meta_function_declaration, structured_native_functions)), }) schema_selector = selector if options.force_schema_registration: schema_selector = SelectiveBuilder.get_nop_selector() cpu_fm.write('RegisterSchema.cpp', lambda: { 'schema_registrations': list(mapMaybe(RegisterSchema(schema_selector), native_functions)), }) cpu_fm.write('Functions.h', lambda: { 'function_declarations': list(mapMaybe(ComputeFunction(Target.DECLARATION), native_functions)), }) cpu_fm.write('Functions.cpp', lambda: { 'function_definitions': list(mapMaybe(ComputeFunction(Target.DEFINITION), native_functions)), }) core_fm.write('TensorBody.h', lambda: { 'tensor_method_declarations': list(mapMaybe(ComputeTensorMethod(Target.DECLARATION), native_functions)), }) core_fm.write('TensorMethods.cpp', lambda: { 'tensor_method_definitions': list(mapMaybe(ComputeTensorMethod(Target.DEFINITION), native_functions)), }) core_fm.write('ATenOpList.cpp', lambda: { 'aten_ops': list(mapMaybe(compute_aten_op, native_functions)), }) cpu_fm.write('NativeFunctions.h', lambda: { 'native_function_declarations': list(concatMap(compute_native_function_declaration, grouped_native_functions)), }) cpu_fm.write('Declarations.yaml', lambda: format_yaml([compute_declaration_yaml(f) for f in native_functions])) cpu_fm.write('RegistrationDeclarations.h', lambda: { 'registration_declarations': [compute_registration_declarations(f) for f in native_functions], }) if options.output_dependencies: cpu_fm.write_outputs(options.output_dependencies) core_fm.write_outputs(f"{options.output_dependencies}-core") cuda_fm.write_outputs(f"{options.output_dependencies}-cuda") if __name__ == '__main__': main()