# @package optimizer # Module caffe2.python.optimizer from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core class Regularizer(object): def __init__(self): self.apply_after_optimizer = False ''' Adds regularization to train_net for given parameter. Its factor ahead of regularization is given when initialization. The param should be a BlobReference. ''' def __call__(self, net, param_init_net, param, grad=None): assert isinstance(param, core.BlobReference) return self._run(net, param_init_net, param, grad) def _run(self, net, param_init_net, param, grad): raise Exception("Not Impelemented") class L1Norm(Regularizer): def __init__(self, reg_lambda): super(L1Norm, self).__init__() assert reg_lambda >= 0,\ 'factor ahead of regularization should be 0 or positive' self.reg_lambda = reg_lambda def _run(self, net, param_init_net, param, grad=None): output_blob = net.NextScopedBlob(param + '_l1_regularization') net.LpNorm([param], [output_blob], p=1) net.Scale([output_blob], [output_blob], scale=self.reg_lambda) return output_blob class L2Norm(Regularizer): def __init__(self, reg_lambda): super(L2Norm, self).__init__() assert reg_lambda >= 0,\ 'factor ahead of regularization should be 0 or positive' self.reg_lambda = reg_lambda def _run(self, net, param_init_net, param, grad=None): output_blob = net.NextScopedBlob(param + '_l2_regularization') net.LpNorm([param], [output_blob], p=2) net.Scale([output_blob], [output_blob], scale=self.reg_lambda) return output_blob class MaxNorm(Regularizer): def __init__(self, norm=1.0): super(MaxNorm, self).__init__() self.norm = norm self.apply_after_optimizer = True def _run(self, net, param_init_net, param, grad): assert self.norm > 0, 'norm should be bigger than 0.' if isinstance(grad, core.GradientSlice): net.SparseNormalize( [param, grad.indices, grad.values], [param], use_max_norm=True, norm=self.norm, ) else: raise NotImplementedError( "MaxNorm is not supported for dense parameters" ) class ConstantNorm(Regularizer): def __init__(self, norm=1.0): super(ConstantNorm, self).__init__() self.norm = norm self.apply_after_optimizer = True def _run(self, net, param_init_net, param, grad): assert self.norm > 0, 'norm should be bigger than 0.' if isinstance(grad, core.GradientSlice): net.SparseNormalize( [param, grad.indices, grad.values], [param], use_max_norm=False, norm=self.norm, ) else: raise NotImplementedError( "ConstantNorm is not supported for dense parameters" )