import torch from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, dtypes, dtypesIfCUDA, ) from torch.testing._internal.common_utils import ( TestCase, run_tests, gradcheck, ) class TestSegmentReductions(TestCase): def _test_max_simple_1d(self, device, dtype, unsafe, axis): lengths = torch.tensor([1, 2, 3], device=device) data = torch.tensor( [1, float("nan"), 3, 4, 5, 5], device=device, dtype=dtype, requires_grad=True, ) expected_result = torch.tensor([1, float("nan"), 5], device=device, dtype=dtype) actual_result = torch.segment_reduce( data=data, reduce="max", lengths=lengths, axis=axis, unsafe=unsafe ) self.assertEqual( expected_result, actual_result, rtol=1e-03, atol=1e-05, equal_nan=True ) # Backward is only supported for cpu tensors for now. Return early if cuda if data.is_cuda: return # Test backward expected_grad = torch.tensor([1, 1, 0, 0, 0.5, 0.5], device=device, dtype=dtype) actual_result.sum().backward() self.assertEqual( expected_grad, data.grad, rtol=1e-03, atol=1e-05, equal_nan=True ) # gradcheck does not work well with bfloat16 or fp16 cpu types # also there is small numerical difference with fp32 if dtype not in [torch.half, torch.bfloat16, torch.float]: # gradcheck does not like "nan" input data = torch.tensor( [1, 10, 3, 4, 5, 5], device=device, dtype=dtype, requires_grad=True, ) self.assertTrue( gradcheck( lambda x: torch.segment_reduce( data=x, reduce="max", lengths=lengths, axis=axis, unsafe=unsafe ), (data,), ) ) @dtypesIfCUDA(torch.half, torch.bfloat16, torch.float, torch.double) @dtypes(torch.half, torch.bfloat16, torch.float, torch.double) def test_max_simple_1d(self, device, dtype): self._test_max_simple_1d(device, dtype, False, 0) self._test_max_simple_1d(device, dtype, False, -1) self._test_max_simple_1d(device, dtype, True, 0) self._test_max_simple_1d(device, dtype, True, -1) instantiate_device_type_tests(TestSegmentReductions, globals()) if __name__ == "__main__": run_tests()