#include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace torch::jit::fuser::cuda; // Return reduction tensor view and output of reduction static void setupDivMaxSoftmaxDropoutForward(Fusion* fusion, DataType dtype) { FusionGuard fg(fusion); bool is_fp16 = dtype == DataType::Half; TensorView* tv0 = TensorViewBuilder() .ndims(4) .dtype(dtype) .contiguity({true, false, false, true}) .shape({-1, 1, 1, -1}) .build(); TensorView* tv1 = makeContigTensor(4, dtype); fusion->addInput(tv0); fusion->addInput(tv1); // TODO: should be input auto d16 = IrBuilder::create(1.0); if (is_fp16) { tv0 = castOp(DataType::Float, tv0); tv1 = castOp(DataType::Float, tv1); } auto tv2 = div(tv1, d16); auto tv3 = add(tv2, tv0); auto tv10 = softmax(tv3, 3); auto dropout_tvs = dropout(tv10, IrBuilder::create(0.9)); auto tv12 = dropout_tvs.mask; auto tv14 = dropout_tvs.output; if (is_fp16) { tv14 = castOp(DataType::Half, tv14); tv10 = castOp(DataType::Half, tv10); tv3 = castOp(DataType::Half, tv3); } fusion->addOutput(tv14); fusion->addOutput(tv12); fusion->addOutput(tv10); fusion->addOutput(tv3); } static void setupDivMaxSoftmaxDropoutBackward(Fusion* fusion, DataType dtype) { TensorView* tv0 = makeContigTensor(4, dtype); // Strangely tv1 isn't used anywhere, need to come back to that... TensorView* tv1 = makeContigTensor(4, dtype); TensorView* tv2 = makeContigTensor(4, dtype); TensorView* tv3 = makeContigTensor(4, DataType::Bool); fusion->addInput(tv0); fusion->addInput(tv1); fusion->addInput(tv2); fusion->addInput(tv3); bool is_fp16 = dtype == DataType::Half; if (is_fp16) { tv0 = castOp(DataType::Float, tv0); tv1 = castOp(DataType::Float, tv1); tv2 = castOp(DataType::Float, tv2); } // TODO: should be inputs auto d32 = IrBuilder::create(1.0); // fusion->addInput(d32); auto d33 = IrBuilder::create(2.0); // fusion->addInput(d33); auto tv4 = mul(tv2, tv3); auto tv5 = mul(tv4, d33); auto tv6 = mul(tv5, tv0); auto tv7 = sum(tv6, {-1}); auto tv8 = broadcast(tv7, {false, false, false, true}); auto tv9 = mul(tv0, tv8); auto tv10 = sub(tv6, tv9); auto tv11 = div(tv10, d32); if (is_fp16) { tv10 = castOp(DataType::Half, tv10); tv11 = castOp(DataType::Half, tv11); } fusion->addOutput(tv11); fusion->addOutput(tv10); } static void MagicScheduler_DivMaxSoftDropFwd( benchmark::State& benchmark_state, DataType dtype) { Fusion fusion; FusionGuard fg(&fusion); auto w = benchmark_state.range(0); auto x = benchmark_state.range(1); auto y = benchmark_state.range(2); auto z = benchmark_state.range(3); setupDivMaxSoftmaxDropoutForward(&fusion, dtype); auto tvs = ir_utils::allTvs(&fusion); at::manual_seed(0); auto options = at::TensorOptions().dtype(data_type_to_aten(dtype)).device(at::kCUDA, 0); at::Tensor t0 = at::randn({w, 1, 1, z}, options); at::Tensor t1 = at::randn({w, x, y, z}, options); std::vector at_inputs = {t0, t1}; std::vector cg_outputs; auto norm_params = getPersistentHeuristics(&fusion, at_inputs); TORCH_CHECK(norm_params != nullptr, "Norm scheduler can't be used!"); schedulePersistentKernel(&fusion, *norm_params); FusionExecutor fe; fe.compileFusion(&fusion); fe.setMeasureKernelTimeFlag(true); // Sync everything up before we start cudaDeviceSynchronize(); for (auto _ : benchmark_state) { CudaKernelTimer timer; cg_outputs = fe.runFusion({t0, t1}, norm_params->lparams); benchmark_state.SetIterationTime(fe.kernelTimeMs() / 1000.0); } // Sync everything up before we're finished, don't want to run ahead on the // cpu while benchmarking. cudaDeviceSynchronize(); int64_t bytes = 0; for (auto tensor : std::vector({t0, t1})) { bytes += tensor.numel() * (int64_t)dataTypeSize(aten_to_data_type(tensor.scalar_type())); } for (auto tensor : cg_outputs) { bytes += tensor.numel() * (int64_t)dataTypeSize(aten_to_data_type(tensor.scalar_type())); } benchmark_state.SetBytesProcessed( bytes * int64_t(benchmark_state.iterations())); } static void MagicScheduler_DivMaxSoftDropBwd( benchmark::State& benchmark_state, DataType dtype) { Fusion fusion; FusionGuard fg(&fusion); auto w = benchmark_state.range(0); auto x = benchmark_state.range(1); auto y = benchmark_state.range(2); auto z = benchmark_state.range(3); setupDivMaxSoftmaxDropoutBackward(&fusion, dtype); auto tvs = ir_utils::allTvs(&fusion); at::manual_seed(0); auto options = at::TensorOptions().dtype(data_type_to_aten(dtype)).device(at::kCUDA, 0); at::Tensor t0 = at::randn({w, x, y, z}, options); at::Tensor t1 = at::randn({w, x, y, z}, options); at::Tensor t2 = at::randn({w, x, y, z}, options); at::Tensor t3 = at::randn({w, x, y, z}, options).round().to(at::kBool); std::vector at_inputs = {t0, t1, t2, t3}; std::vector cg_outputs; auto norm_params = getPersistentHeuristics(&fusion, at_inputs); TORCH_CHECK(norm_params != nullptr, "Norm scheduler can't be used!"); schedulePersistentKernel(&fusion, *norm_params); FusionExecutor fe; fe.compileFusion(&fusion); fe.setMeasureKernelTimeFlag(true); // Sync everything up before we start cudaDeviceSynchronize(); for (auto _ : benchmark_state) { CudaKernelTimer timer; cg_outputs = fe.runFusion({t0, t1, t2, t3}, norm_params->lparams); benchmark_state.SetIterationTime(fe.kernelTimeMs() / 1000.0); } // Sync everything up before we're finished, don't want to run ahead on the // cpu while benchmarking. cudaDeviceSynchronize(); int64_t bytes = 0; // Some reason t1 isn't used, ignore it. for (auto tensor : std::vector({t0, t2, t3})) { bytes += tensor.numel() * (int64_t)dataTypeSize(aten_to_data_type(tensor.scalar_type())); } for (auto tensor : cg_outputs) { bytes += tensor.numel() * (int64_t)dataTypeSize(aten_to_data_type(tensor.scalar_type())); } benchmark_state.SetBytesProcessed( bytes * int64_t(benchmark_state.iterations())); } static void setupBiasDropoutAddLayernormFwd(Fusion* fusion, DataType dtype) { FusionGuard fg(fusion); bool is_fp16 = dtype == DataType::Half; TensorView* tv0 = makeContigTensor(1, dtype); TensorView* tv1 = makeContigTensor(1, dtype); TensorView* tv2 = makeContigTensor(3, dtype); TensorView* tv3 = makeContigTensor(3, dtype); TensorView* tv4 = makeContigTensor(1, dtype); fusion->addInput(tv0); fusion->addInput(tv1); fusion->addInput(tv2); fusion->addInput(tv3); fusion->addInput(tv4); if (is_fp16) { tv0 = castOp(DataType::Float, tv0); tv1 = castOp(DataType::Float, tv1); tv2 = castOp(DataType::Float, tv2); tv3 = castOp(DataType::Float, tv3); tv4 = castOp(DataType::Float, tv4); } auto tv5 = broadcast(tv4, {true, true, false}); auto tv6 = add(tv3, tv5); auto dropout_outs = dropout(tv6, IrBuilder::create(0.9)); auto tv8 = dropout_outs.output; auto tv10 = dropout_outs.mask; auto tv11 = add(tv10, tv2); auto layer_norm_outs = layer_norm(tv11, 1, tv0, tv1, IrBuilder::create(1e-5)); auto tv14 = layer_norm_outs.output; auto tv21 = layer_norm_outs.mean; auto tv26 = layer_norm_outs.invstd; if (is_fp16) { tv11 = castOp(DataType::Half, tv11); tv14 = castOp(DataType::Half, tv14); tv21 = castOp(DataType::Half, tv21); tv26 = castOp(DataType::Half, tv26); } fusion->addOutput(tv8); fusion->addOutput(tv11); fusion->addOutput(tv14); fusion->addOutput(tv21); fusion->addOutput(tv26); } static void MagicScheduler_BiasDropoutAddLayernormFwd( benchmark::State& benchmark_state, DataType dtype) { Fusion fusion; FusionGuard fg(&fusion); auto x = benchmark_state.range(0); auto y = benchmark_state.range(1); auto z = benchmark_state.range(2); setupBiasDropoutAddLayernormFwd(&fusion, dtype); auto tvs = ir_utils::allTvs(&fusion); at::manual_seed(0); auto options = at::TensorOptions().dtype(data_type_to_aten(dtype)).device(at::kCUDA, 0); at::Tensor t0 = at::randn({z}, options); at::Tensor t1 = at::randn({z}, options); at::Tensor t2 = at::randn({x, y, z}, options); at::Tensor t3 = at::randn({x, y, z}, options); at::Tensor t4 = at::randn({z}, options); std::vector at_inputs = {t0, t1, t2, t3, t4}; std::vector cg_outputs; auto norm_params = getPersistentHeuristics(&fusion, at_inputs); TORCH_CHECK(norm_params != nullptr, "Norm scheduler can't be used!"); schedulePersistentKernel(&fusion, *norm_params); FusionExecutor fe; fe.compileFusion(&fusion); fe.setMeasureKernelTimeFlag(true); // Sync everything up before we start cudaDeviceSynchronize(); for (auto _ : benchmark_state) { CudaKernelTimer timer; cg_outputs = fe.runFusion(at_inputs, norm_params->lparams); benchmark_state.SetIterationTime(fe.kernelTimeMs() / 1000.0); } // Sync everything up before we're finished, don't want to run ahead on the // cpu while benchmarking. cudaDeviceSynchronize(); int64_t bytes = 0; for (auto inp : at_inputs) { auto tensor = inp.toTensor(); bytes += tensor.numel() * (int64_t)dataTypeSize(aten_to_data_type(tensor.scalar_type())); } for (auto tensor : cg_outputs) { bytes += tensor.numel() * (int64_t)dataTypeSize(aten_to_data_type(tensor.scalar_type())); } benchmark_state.SetBytesProcessed( bytes * int64_t(benchmark_state.iterations())); } static void MagicScheduler_fp32_BiasDropoutAddLayernormFwd( benchmark::State& benchmark_state) { MagicScheduler_BiasDropoutAddLayernormFwd(benchmark_state, DataType::Float); } static void setupBiasDropoutAddLayernormBwd1(Fusion* fusion, DataType dtype) { FusionGuard fg(fusion); bool is_fp16 = dtype == DataType::Half; TensorView* tv1 = makeContigTensor(3, dtype); TensorView* tv2 = makeContigTensor(3, dtype); TensorView* tv3 = TensorViewBuilder() .ndims(3) .dtype(dtype) .contiguity({true, true, true}) .shape({-1, -1, 1}) .build(); TensorView* tv4 = TensorViewBuilder() .ndims(3) .dtype(dtype) .contiguity({true, true, true}) .shape({-1, -1, 1}) .build(); fusion->addInput(tv1); fusion->addInput(tv2); fusion->addInput(tv3); fusion->addInput(tv4); if (is_fp16) { tv1 = castOp(DataType::Float, tv1); tv2 = castOp(DataType::Float, tv2); tv3 = castOp(DataType::Float, tv3); tv4 = castOp(DataType::Float, tv4); } auto tv7 = sub(tv2, tv3); auto tv8 = mul(tv7, tv4); auto tv24 = sum(tv1, {0, 1}); auto tv22 = mul(tv1, tv8); auto tv23 = sum(tv22, {0, 1}); if (is_fp16) { tv24 = castOp(DataType::Half, tv24); tv23 = castOp(DataType::Half, tv23); tv8 = castOp(DataType::Half, tv8); } fusion->addOutput(tv24); fusion->addOutput(tv23); fusion->addOutput(tv8); } static void MagicScheduler_BiasDropoutAddLayernormBwd1( benchmark::State& benchmark_state, DataType dtype) { Fusion fusion; FusionGuard fg(&fusion); auto x = benchmark_state.range(0); auto y = benchmark_state.range(1); auto z = benchmark_state.range(2); setupBiasDropoutAddLayernormBwd1(&fusion, dtype); auto tvs = ir_utils::allTvs(&fusion); at::manual_seed(0); auto options = at::TensorOptions().dtype(data_type_to_aten(dtype)).device(at::kCUDA, 0); at::Tensor t0 = at::randn({x, y, z}, options); at::Tensor t1 = at::randn({x, y, z}, options); at::Tensor t2 = at::randn({x, y, 1}, options); at::Tensor t3 = at::randn({x, y, 1}, options); std::vector at_inputs = {t0, t1, t2, t3}; std::vector cg_outputs; auto norm_params = getReductionHeuristics(&fusion, at_inputs); TORCH_CHECK(norm_params != nullptr, "Norm scheduler can't be used!"); scheduleReduction(&fusion, *norm_params); FusionExecutor fe; fe.compileFusion(&fusion); fe.setMeasureKernelTimeFlag(true); // Sync everything up before we start cudaDeviceSynchronize(); for (auto _ : benchmark_state) { clearL2Cache(); cg_outputs = fe.runFusion(at_inputs, norm_params->lparams); benchmark_state.SetIterationTime(fe.kernelTimeMs() / 1000.0); } // Sync everything up before we're finished, don't want to run ahead on the // cpu while benchmarking. cudaDeviceSynchronize(); int64_t bytes = 0; for (auto inp : at_inputs) { auto tensor = inp.toTensor(); bytes += tensor.numel() * (int64_t)dataTypeSize(aten_to_data_type(tensor.scalar_type())); } for (auto tensor : cg_outputs) { bytes += tensor.numel() * (int64_t)dataTypeSize(aten_to_data_type(tensor.scalar_type())); } benchmark_state.SetBytesProcessed( bytes * int64_t(benchmark_state.iterations())); } static void setupBiasDropoutAddLayernormBwd2(Fusion* fusion, DataType dtype) { FusionGuard fg(fusion); bool is_fp16 = dtype == DataType::Half; TensorView* tv4 = TensorViewBuilder() .ndims(3) .dtype(dtype) .contiguity({true, true, true}) .shape({-1, -1, 1}) .build(); TensorView* tv5 = makeContigTensor(1, dtype); TensorView* tv1 = makeContigTensor(3, dtype); TensorView* tv8 = makeContigTensor(3, dtype); fusion->addInput(tv4); fusion->addInput(tv5); fusion->addInput(tv1); fusion->addInput(tv8); if (is_fp16) { tv4 = castOp(DataType::Float, tv4); tv5 = castOp(DataType::Float, tv5); tv1 = castOp(DataType::Float, tv1); tv8 = castOp(DataType::Float, tv8); } auto d36 = mul(IrBuilder::create(1.0), tv1->axis(2)->extent()); auto d47 = unaryOp(UnaryOpType::Reciprocal, d36); auto tv9 = broadcast(tv5, {true, true, false}); auto tv10 = mul(tv1, tv9); auto tv14 = mul(tv10, tv8); auto tv15 = sum(tv14, {2}); auto tv16 = broadcast(tv15, {false, false, true}); auto tv17 = mul(tv8, tv16); auto tv12 = sum(tv10, {2}); auto tv13 = broadcast(tv12, {false, false, true}); auto tv11 = mul(d36, tv10); auto tv18 = sub(tv11, tv13); auto tv20 = mul(d47, tv4); auto tv19 = sub(tv18, tv17); auto tv21 = mul(tv20, tv19); if (is_fp16) { tv21 = castOp(DataType::Half, tv21); } fusion->addOutput(tv21); } static void MagicScheduler_BiasDropoutAddLayernormBwd2( benchmark::State& benchmark_state, DataType dtype) { Fusion fusion; FusionGuard fg(&fusion); auto x = benchmark_state.range(0); auto y = benchmark_state.range(1); auto z = benchmark_state.range(2); setupBiasDropoutAddLayernormBwd2(&fusion, dtype); auto tvs = ir_utils::allTvs(&fusion); at::manual_seed(0); auto options = at::TensorOptions().dtype(data_type_to_aten(dtype)).device(at::kCUDA, 0); at::Tensor t4 = at::randn({x, y, 1}, options); at::Tensor t5 = at::randn({z}, options); at::Tensor t1 = at::randn({x, y, z}, options); at::Tensor t8 = at::randn({x, y, z}, options); std::vector at_inputs = {t4, t5, t1, t8}; std::vector cg_outputs; auto norm_params = getPersistentHeuristics(&fusion, at_inputs); TORCH_CHECK(norm_params != nullptr, "Norm scheduler can't be used!"); schedulePersistentKernel(&fusion, *norm_params); FusionExecutor fe; fe.compileFusion(&fusion); fe.setMeasureKernelTimeFlag(true); // Sync everything up before we start cudaDeviceSynchronize(); for (auto _ : benchmark_state) { CudaKernelTimer timer; cg_outputs = fe.runFusion(at_inputs, norm_params->lparams); benchmark_state.SetIterationTime(fe.kernelTimeMs() / 1000.0); } // Sync everything up before we're finished, don't want to run ahead on the // cpu while benchmarking. cudaDeviceSynchronize(); int64_t bytes = 0; for (auto inp : at_inputs) { auto tensor = inp.toTensor(); bytes += tensor.numel() * (int64_t)dataTypeSize(aten_to_data_type(tensor.scalar_type())); } for (auto tensor : cg_outputs) { bytes += tensor.numel() * (int64_t)dataTypeSize(aten_to_data_type(tensor.scalar_type())); } benchmark_state.SetBytesProcessed( bytes * int64_t(benchmark_state.iterations())); } static void setupBiasDropoutAddLayernormBwd3(Fusion* fusion, DataType dtype) { FusionGuard fg(fusion); bool is_fp16 = dtype == DataType::Half; TensorView* tv0 = makeContigTensor(3, dtype); TensorView* tv21 = makeContigTensor(3, dtype); fusion->addInput(tv0); fusion->addInput(tv21); if (is_fp16) { tv0 = castOp(DataType::Float, tv0); tv21 = castOp(DataType::Float, tv21); } // Uncertain this is the right value, but going for it anyways auto d34 = div(IrBuilder::create(1.0), tv0->axis(2)->extent()); auto tv25 = mul(tv21, tv0); auto tv26 = mul(tv25, d34); auto tv27 = sum(tv26, {0, 1}); if (is_fp16) { tv26 = castOp(DataType::Half, tv27); tv27 = castOp(DataType::Half, tv27); } fusion->addOutput(tv26); fusion->addOutput(tv27); } static void MagicScheduler_BiasDropoutAddLayernormBwd3( benchmark::State& benchmark_state, DataType dtype) { Fusion fusion; FusionGuard fg(&fusion); auto x = benchmark_state.range(0); auto y = benchmark_state.range(1); auto z = benchmark_state.range(2); setupBiasDropoutAddLayernormBwd3(&fusion, dtype); auto tvs = ir_utils::allTvs(&fusion); at::manual_seed(0); auto options = at::TensorOptions().dtype(data_type_to_aten(dtype)).device(at::kCUDA, 0); at::Tensor t0 = at::randn({x, y, z}, options); at::Tensor t21 = at::randn({x, y, z}, options); std::vector at_inputs = {t0, t21}; std::vector cg_outputs; auto norm_params = getReductionHeuristics(&fusion, at_inputs); TORCH_CHECK(norm_params != nullptr, "Norm scheduler can't be used!"); scheduleReduction(&fusion, *norm_params); FusionExecutor fe; fe.compileFusion(&fusion); fe.setMeasureKernelTimeFlag(true); // Sync everything up before we start cudaDeviceSynchronize(); for (auto _ : benchmark_state) { CudaKernelTimer timer; cg_outputs = fe.runFusion(at_inputs, norm_params->lparams); benchmark_state.SetIterationTime(fe.kernelTimeMs() / 1000.0); } // Sync everything up before we're finished, don't want to run ahead on the // cpu while benchmarking. cudaDeviceSynchronize(); int64_t bytes = 0; for (auto inp : at_inputs) { auto tensor = inp.toTensor(); bytes += tensor.numel() * (int64_t)dataTypeSize(aten_to_data_type(tensor.scalar_type())); } for (auto tensor : cg_outputs) { bytes += tensor.numel() * (int64_t)dataTypeSize(aten_to_data_type(tensor.scalar_type())); } benchmark_state.SetBytesProcessed( bytes * int64_t(benchmark_state.iterations())); } //------------------------------------------------------------------------------ static void DivMaxSoftDropFwd_fp32(benchmark::State& benchmark_state) { MagicScheduler_DivMaxSoftDropFwd(benchmark_state, DataType::Float); } static void DivMaxSoftDropBwd_fp32(benchmark::State& benchmark_state) { MagicScheduler_DivMaxSoftDropBwd(benchmark_state, DataType::Float); } static void DivMaxSoftDropFwd_fp16(benchmark::State& benchmark_state) { MagicScheduler_DivMaxSoftDropFwd(benchmark_state, DataType::Half); } static void DivMaxSoftDropBwd_fp16(benchmark::State& benchmark_state) { MagicScheduler_DivMaxSoftDropBwd(benchmark_state, DataType::Half); } static void BiasDropoutAddLayernormBwd1_fp32( benchmark::State& benchmark_state) { MagicScheduler_BiasDropoutAddLayernormBwd1(benchmark_state, DataType::Float); } // Use full ampere wave here static void BiasDropoutAddLayernormBwd1_tf32( benchmark::State& benchmark_state) { MagicScheduler_BiasDropoutAddLayernormBwd1(benchmark_state, DataType::Float); } static void BiasDropoutAddLayernormBwd2_fp32( benchmark::State& benchmark_state) { MagicScheduler_BiasDropoutAddLayernormBwd2(benchmark_state, DataType::Float); } static void BiasDropoutAddLayernormBwd3_fp32( benchmark::State& benchmark_state) { MagicScheduler_BiasDropoutAddLayernormBwd3(benchmark_state, DataType::Float); } //------------------------------------------------------------------------------ BENCHMARK(DivMaxSoftDropFwd_fp32) // ->RangeMultiplier(2) ->Ranges({{8, 8}, {16, 16}, {128, 128}, {128, 128}}) ->Unit(benchmark::kMicrosecond) ->UseManualTime(); BENCHMARK(DivMaxSoftDropBwd_fp32) // ->RangeMultiplier(2) ->Ranges({{8, 8}, {16, 16}, {128, 128}, {128, 128}}) ->Unit(benchmark::kMicrosecond) ->UseManualTime(); BENCHMARK(DivMaxSoftDropFwd_fp16) // ->RangeMultiplier(2) ->Ranges({{8, 8}, {16, 16}, {128, 128}, {128, 128}}) ->Unit(benchmark::kMicrosecond) ->UseManualTime(); BENCHMARK(DivMaxSoftDropBwd_fp16) // ->RangeMultiplier(2) ->Ranges({{8, 8}, {16, 16}, {128, 128}, {128, 128}}) ->Unit(benchmark::kMicrosecond) ->UseManualTime(); BENCHMARK(BiasDropoutAddLayernormBwd1_fp32) // ->RangeMultiplier(2) ->Ranges({{32, 1024}, {128, 128}, {1024, 1024}}) ->Unit(benchmark::kMicrosecond) ->UseManualTime(); // Use full ampere wave here BENCHMARK(BiasDropoutAddLayernormBwd1_tf32) // ->RangeMultiplier(2) ->Ranges({{32, 1024}, {128, 128}, {864, 864}}) ->Unit(benchmark::kMicrosecond) ->UseManualTime(); BENCHMARK(BiasDropoutAddLayernormBwd2_fp32) ->Ranges({{32, 1024}, {128, 128}, {1024, 1024}}) ->Unit(benchmark::kMicrosecond) ->UseManualTime(); BENCHMARK(BiasDropoutAddLayernormBwd3_fp32) ->Ranges({{32, 1024}, {128, 128}, {1024, 1024}}) ->Unit(benchmark::kMicrosecond) ->UseManualTime();