## @package model_helper # Module caffe2.python.model_helper from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core, scope, workspace import numpy as np import logging class ParameterType(object): DENSE = 'dense' SPARSE = 'sparse' class ParameterInfo(object): def __init__( self, param_id, param, key=None, shape=None, length=None): assert isinstance(param, core.BlobReference) self.param_id = param_id self.name = str(param) self.blob = param self.key = key self.shape = shape self.size = None if shape is None else np.prod(shape) self.length = max(1, length if length is not None else 1) self.grad = None self._cloned_init_net = None def grad_type(self): # self.grad could be None for model parallelism with parameter server if self.grad is None: return return ( ParameterType.SPARSE if isinstance(self.grad, core.GradientSlice) else ParameterType.DENSE) def cloned_init_net(self): if not self._cloned_init_net: init_net, outputs = self.blob.Net().ClonePartial( 'param_%d_%s_init' % (self.param_id, self.name), inputs=[], outputs=[self.blob]) self._cloned_init_net = (init_net, outputs[0]) return self._cloned_init_net def __str__(self): return self.name class ModelHelper(object): """A helper model so we can manange models more easily. It contains net def and parameter storages. You can add an Operator yourself, e.g. model = model_helper.ModelHelper(name="train_net") # init your weight and bias as w and b w = model.param_init_net.XavierFill(...) b = model.param_init_net.ConstantFill(...) fc1 = model.FC([input, w, b], output, **kwargs) or you can use helper functions in brew module without manually defining parameter initializations and operators. model = model_helper.ModelHelper(name="train_net") fc1 = brew.fc(model, input, output, dim_in, dim_out, **kwargs) """ def __init__(self, name=None, init_params=True, allow_not_known_ops=True, skip_sparse_optim=False, param_model=None): self.name = name or "model" self.net = core.Net(self.name) if param_model is not None: self.param_init_net = param_model.param_init_net self.param_to_grad = param_model.param_to_grad self.params = param_model.params self.computed_params = param_model.computed_params else: self.param_init_net = core.Net(name + '_init') self.param_to_grad = {} self.params = [] self.computed_params = [] self._param_info = [] self._devices = [] self.gradient_ops_added = False self.init_params = init_params self.allow_not_known_ops = allow_not_known_ops self.skip_sparse_optim = skip_sparse_optim self.weights = [] self.biases = [] def get_name(self): return self.name def _infer_param_shape(self, param): for op in self.param_init_net.Proto().op: if str(param) in op.output: for arg in op.arg: if arg.name == "shape": return list(arg.ints) return None def _update_param_info(self): assert len(self._param_info) <= len(self.params) for param in self.params[len(self._param_info):]: if not isinstance(param, core.BlobReference): param = core.BlobReference(str(param), net=self._param_init_net) self._param_info.append(ParameterInfo( param_id=len(self._param_info), param=param, shape=self._infer_param_shape(param))) for info in self._param_info: info.grad = self.param_to_grad.get(info.name) def add_param(self, param, key=None, shape=None, length=None): self._update_param_info() if key is not None and self.net.input_record() is not None: idx = self.net.input_record().field_blobs().index(key) key = self.net.input_record().field_names()[idx] shape = shape if shape is not None else self._infer_param_shape(param) self.params.append(param) if not isinstance(param, core.BlobReference): param = core.BlobReference(str(param), net=self._param_init_net) self._param_info.append(ParameterInfo( param_id=len(self._param_info), param=param, shape=shape, key=key, length=length, )) return self._param_info[-1] def param_info(self, grad_type=None, id=None): self._update_param_info() if id is not None: assert grad_type is None info = self._param_info[id] assert info.param_id == id return info elif grad_type is not None: return [ info for info in self._param_info if info.grad_type() == grad_type] else: return self._param_info def GetParams(self, namescope=None, top_scope=False): ''' Returns the params in current namescope ''' if namescope is None: namescope = scope.CurrentNameScope() else: if not namescope.endswith(scope._NAMESCOPE_SEPARATOR): namescope += scope._NAMESCOPE_SEPARATOR if namescope == '': return self.params[:] elif top_scope: return [ p for p in self.params if p.GetNameScope().startswith(namescope) ] else: return [p for p in self.params if p.GetNameScope().startswith(namescope)] def Proto(self): return self.net.Proto() def InitProto(self): return self.param_init_net.Proto() def RunAllOnGPU(self, *args, **kwargs): self.param_init_net.RunAllOnGPU(*args, **kwargs) self.net.RunAllOnGPU(*args, **kwargs) def CreateDB(self, blob_out, db, db_type, **kwargs): dbreader = self.param_init_net.CreateDB( [], blob_out, db=db, db_type=db_type, **kwargs) return dbreader def AddGradientOperators(self, *args, **kwargs): if self.gradient_ops_added: raise RuntimeError("You cannot run AddGradientOperators twice.") self.gradient_ops_added = True self.grad_map = self.net.AddGradientOperators(*args, **kwargs) self.param_to_grad = self.get_param_to_grad(self.params) return self.grad_map def get_param_to_grad(self, params): ''' Given a list of parameters returns a dict from a parameter to a corresponding gradient ''' param_to_grad = {} if not self.gradient_ops_added: raise RuntimeError("You need to run AddGradientOperators first.") # We need to use empty namescope when creating the gradients # to prevent duplicating the namescope prefix for gradient blobs. for p in params: if str(p) in self.grad_map: param_to_grad[p] = self.grad_map[str(p)] return param_to_grad def GetOptimizationPairs(self, params=None): ''' Returns a map for param => grad. If params is not specified, all parameters will be considered. ''' if not self.gradient_ops_added: raise RuntimeError("Need to call AddGradientOperators first") param_to_grad = self.param_to_grad if params: param_to_grad = self.get_param_to_grad(params) if not self.skip_sparse_optim: return param_to_grad else: return {param: grad for param, grad in param_to_grad.items() if not isinstance(grad, core.GradientSlice)} def GetComputedParams(self, namescope=None): ''' Returns the computed params in current namescope. 'Computed params' are such parameters that are not optimized via gradient descent but are directly computed from data, such as the running mean and variance of Spatial Batch Normalization. ''' if namescope is None: namescope = scope.CurrentNameScope() else: if not namescope.endswith(scope._NAMESCOPE_SEPARATOR): namescope += scope._NAMESCOPE_SEPARATOR if namescope == '': return self.computed_params[:] else: return [p for p in self.computed_params if p.GetNameScope() == namescope] def GetAllParams(self, namescope=None): return self.GetParams(namescope) + self.GetComputedParams(namescope) def TensorProtosDBInput( self, unused_blob_in, blob_out, batch_size, db, db_type, **kwargs ): """TensorProtosDBInput.""" dbreader_name = "dbreader_" + db dbreader = self.param_init_net.CreateDB( [], dbreader_name, db=db, db_type=db_type) return self.net.TensorProtosDBInput( dbreader, blob_out, batch_size=batch_size) def AddOperator(self, op_type, inputs, parameters, *args, **kwargs): """ Adds an operator to a model. Use parameters list to specify which operator inputs are model parameters to be optimized. Example of usage: model.SparseLengthsSum( [embedding, indices, lengths], parameters=[embedding], ) Here embedding is a parameter to be optimized while indices and lengths are not. """ extra_parameters = filter(lambda x: (x not in inputs), parameters) if len(extra_parameters) > 0: raise Exception("Some parameters are not inputs: {}".format( map(str, extra_parameters) )) self.params.extend(parameters) return self.net.__getattr__(op_type)(inputs, *args, **kwargs) def GetDevices(self): assert len(self._devices) > 0, \ "Use data_parallel_model to run model on multiple GPUs." return self._devices def __getattr__(self, op_type): """Catch-all for all other operators, mostly those without params.""" if op_type.startswith('__'): raise AttributeError(op_type) if not core.IsOperator(op_type): raise RuntimeError( 'Method ' + op_type + ' is not a registered operator.' + ' Did you mean: [' + ','.join(workspace.C.nearby_opnames(op_type)) + ']' ) # known_working_ops are operators that do not need special care. known_working_ops = [ "Accuracy", "Adam", "Add", "Adagrad", "SparseAdagrad", "AveragedLoss", "Cast", "Checkpoint", "ConstantFill", "Copy", "CopyGPUToCPU", "CopyCPUToGPU", "DequeueBlobs", "EnsureCPUOutput", "Flatten", "FlattenToVec", "LabelCrossEntropy", "LearningRate", "MakeTwoClass", "MatMul", "NCCLAllreduce", "NHWC2NCHW", "PackSegments", "Print", "PRelu", "Scale", "ScatterWeightedSum", "Sigmoid", "SortedSegmentSum", "Snapshot", # Note: snapshot is deprecated, use Checkpoint "Softmax", "SoftmaxWithLoss", "SquaredL2Distance", "Squeeze", "StopGradient", "Summarize", "Tanh", "UnpackSegments", "WeightedSum", "ReduceFrontSum", ] if op_type not in known_working_ops: if not self.allow_not_known_ops: raise RuntimeError( "Operator {} is not known to be safe".format(op_type)) logging.warning("You are creating an op that the ModelHelper " "does not recognize: {}.".format(op_type)) return self.net.__getattr__(op_type) def ExtractPredictorNet( net_proto, input_blobs, output_blobs, device=None, renames=None, disabled_inputs=None ): ''' Takes a model net for training and returns a net which can be used for prediction. For example, all gradient operators and input operators are removed. @param net_proto protobuf of the net you want to process (net.Proto()) @param input_blobs list/set of blob names that are the inputs of predictor @param output_blobs list/set of blob names that are outputs of predictor @param device optional device option that is assigned @param renames dictionary of blob name to a new name (optional) @param disabled_inputs optional set of blobs that are 'switched off'. This will cause branches with those blobs as inputs to be removed ''' predict_net = core.Net(net_proto.name + "_predict") predict_proto = predict_net.Proto() orig_external_inputs = set(net_proto.external_input) orig_external_outputs = set(net_proto.external_output) input_blobs = {str(b) for b in input_blobs} known_blobs = set(orig_external_inputs).union(input_blobs) output_blobs = {str(b) for b in output_blobs} external_inputs = set(input_blobs) external_outputs = set(output_blobs) if disabled_inputs is not None: known_blobs = known_blobs - set(disabled_inputs) ops = list(net_proto.op) # Find the range of ops that we should include try: first_op_with_input = min( [ j for j in range(len(ops)) if input_blobs.intersection(ops[j].input) and ops[j].type != 'StopGradient' ] ) except ValueError: raise Exception("No ops with input={}".format(input_blobs)) try: last_op_with_output = max( [ j for j in range(len(ops)) if output_blobs.intersection(ops[j].output) ] ) except ValueError: raise Exception("No ops with output={}".format(output_blobs)) def validate_op(op): # Check that the op does not have is_test = 0 set. This is a common # pitfall with SpatialBN op, at lest. for arg in op.arg: if arg.name == "is_test" and arg.i == 0: raise Exception( "A operator had is_test=0, did you try to extract a " + "predictor from a train model (instead of test model)?" + " Op was: {}".format(str(op)) ) # Iterate through the ops and only include those whose inputs # we can satisfy. for op in ops[first_op_with_input:(last_op_with_output + 1)]: if known_blobs.issuperset(op.input): if device is not None: op.device_option.device_type = device.device_type op.device_option.cuda_gpu_id = device.cuda_gpu_id validate_op(op) predict_proto.op.extend([op]) known_blobs.update(op.output) external_inputs.update( set(op.input).intersection(orig_external_inputs) ) external_outputs.update( set(op.output).intersection(orig_external_outputs) ) else: logging.debug( "Op {} had unknown inputs: {}".format( op.type, set(op.input).difference(known_blobs) ) ) def rename_list(proto_list): if renames is None: return # proto lists don't support assignments new_list = proto_list[:] for j, b in enumerate(new_list): if b in renames: new_list[j] = renames[b] del proto_list[:] proto_list.extend(new_list) # Predictor net's external inputs and outputs include only those # that are part of this net. predict_proto.external_input.extend(external_inputs) predict_proto.external_output.extend(external_outputs) rename_list(predict_proto.external_input) rename_list(predict_proto.external_output) for op in predict_proto.op: rename_list(op.input) rename_list(op.output) return predict_net