#include "torch/csrc/utils/pybind.h" #include "torch/csrc/jit/python_tracer.h" #include "torch/csrc/jit/tracer.h" #include "torch/csrc/jit/python_ir.h" #include "torch/csrc/jit/python_arg_flatten.h" #include "torch/csrc/jit/export.h" #include "torch/csrc/jit/argument_spec.h" #include "torch/csrc/jit/passes/remove_expands.h" #include "torch/csrc/jit/passes/graph_fuser.h" #include "torch/csrc/jit/passes/onnx.h" #include "torch/csrc/jit/passes/dead_code_elimination.h" #include "torch/csrc/jit/passes/erase_number_types.h" #include "torch/csrc/jit/passes/common_subexpression_elimination.h" #include "torch/csrc/jit/passes/peephole.h" #include "torch/csrc/jit/passes/canonicalize.h" #include "torch/csrc/jit/passes/onnx/peephole.h" #include "torch/csrc/jit/passes/onnx/fixup_onnx_loop.h" #include "torch/csrc/jit/passes/shape_analysis.h" #include "torch/csrc/jit/passes/decompose_addmm.h" #include "torch/csrc/jit/passes/constant_propagation.h" #include "torch/csrc/jit/passes/loop_unrolling.h" #include "torch/csrc/jit/passes/to_batch.h" #include "torch/csrc/jit/passes/lower_tuples.h" #include "torch/csrc/jit/passes/specialize_undef.h" #include "torch/csrc/jit/graph_executor.h" #include "torch/csrc/jit/script/init.h" #include "torch/csrc/jit/script/python_tree_views.h" #include "torch/csrc/jit/batched/BatchTensor.h" #include "torch/csrc/jit/pybind_utils.h" #include "torch/csrc/jit/function_schema.h" #include "torch/csrc/jit/serialization.h" #include "torch/csrc/jit/operator.h" #include #include #include #include #include #include #include namespace torch { namespace jit { namespace { using autograd::variable_list; bool loadPythonClasses() { // Leaving this code here, because it will likely be useful at some point //PyObject *jit_module = PyImport_ImportModule("torch.jit"); //THPUtils_assert(jit_module, "class loader couldn't access " //"torch.jit module"); //PyObject *jit_dict = PyModule_GetDict(jit_module); return true; } } // anonymous namespace extern std::string runJITCPPTests(); void initJITBindings(PyObject *module) { auto m = py::handle(module).cast(); py::class_(m, "IODescriptor"); m.def("_jit_init", loadPythonClasses) .def("_jit_pass_onnx", ToONNX) .def("_jit_pass_lower_all_tuples", LowerAllTuples) .def("_jit_pass_onnx_peephole", PeepholeOptimizeONNX) .def("_jit_pass_fuse", FuseGraph) .def("_jit_pass_dce", [](std::shared_ptr& g) { return EliminateDeadCode(g); // overload resolution }) .def("_jit_pass_cse", [](std::shared_ptr& g) { return EliminateCommonSubexpression(g); // overload resolution }) .def("_jit_pass_peephole", PeepholeOptimize) .def("_jit_pass_canonicalize", [](const std::shared_ptr& g) { return Canonicalize(g); }) .def("_jit_pass_lint", LintGraph) .def("_jit_pass_shape_analysis", [](Graph& graph, py::tuple inputs, bool with_grad) { PropagateInputShapes(graph, ArgumentSpec(with_grad, evilDeprecatedBadCreateStackDoNotUse(inputs, graph.inputs()))); }) .def("_jit_pass_complete_shape_analysis", [](Graph& graph, py::tuple inputs, bool with_grad) { PropagateInputShapes(graph, CompleteArgumentSpec(with_grad, evilDeprecatedBadCreateStackDoNotUse(inputs, graph.inputs()))); }) .def("_jit_pass_remove_expands", RemoveExpands) .def("_jit_pass_erase_number_types", EraseNumberTypes) .def("_jit_pass_loop_unrolling", UnrollLoops) .def("_jit_pass_constant_propagation", [](std::shared_ptr& g) { return ConstantPropagation(g); }) .def("_jit_run_cpp_tests", [] { // We have to release the GIL inside this method, because if we happen to // initialize the autograd engine in these tests, the newly spawned worker threads will // try to initialize their PyThreadState*, and they need the GIL for this. AutoNoGIL _no_gil; return runJITCPPTests(); }) .def("_jit_flatten", [](py::handle& obj) { auto res = python::flatten(obj); return std::make_pair(res.vars, res.desc); }) .def("_jit_unflatten", [](autograd::variable_list vars, python::IODescriptor& desc) { return py::reinterpret_steal(python::unflatten(vars, desc)); }) .def("_jit_pass_onnx_block", BlockToONNX) .def("_jit_pass_fixup_onnx_loops", FixupONNXLoops) .def("_jit_pass_decompose_addmm", DecomposeAddmm) .def("_jit_pass_specialize_undef", specializeUndef) .def("_jit_differentiate", [](Graph &g, const std::vector& requires_grad) { // the python binding slightly differs in semantics // it makes a copy of the input Graph, and works on that // jit::differentiate mutates the input Graph auto g_clone = g.copy(); return differentiate(g_clone, requires_grad); }); py::class_(m, "CompleteArgumentSpec") .def("__repr__", [](CompleteArgumentSpec& self) { std::ostringstream s; s << self; return s.str(); }); py::class_(m, "ArgumentSpec"); py::class_(m, "Code") .def("executors", [](Code& c) { return py::make_iterator(c.executors().begin(), c.executors().end()); }); py::class_(m, "ExecutionPlanState") .def_property_readonly("graph", [](ExecutionPlanState& s) { return s.graph; }) .def_property_readonly("code", [](ExecutionPlanState& s) { return s.f; }) .def_property_readonly("grad_executor", [](ExecutionPlanState& s) { return s.grad_executor.get(); }); py::class_(m, "Gradient") .def_property_readonly("f", [](Gradient& m) { return m.f; }) .def_property_readonly("df", [](Gradient& m) { return m.df; }) .def_property_readonly("f_real_outputs", [](Gradient& m) { return m.f_real_outputs; }) .def_property_readonly("df_input_vjps", [](Gradient& m) { return m.df_input_vjps; }) .def_property_readonly("df_input_captured_inputs", [](Gradient& m) { return m.df_input_captured_inputs; }) .def_property_readonly("df_input_captured_outputs", [](Gradient& m) { return m.df_input_captured_outputs; }) .def_property_readonly("df_output_vjps", [](Gradient& m) { return m.df_output_vjps; }); py::class_(m, "GraphExecutorState") .def_property_readonly("graph", [](GraphExecutorState& s) { return s.graph; }) .def_property_readonly("execution_plans", [](GraphExecutorState& s) { return s.execution_plans; }) .def_property_readonly("autograd_fallback", [](GraphExecutorState& s) { return s.autograd_fallback; }) .def_property_readonly("autograd_fallback_graph", [](GraphExecutorState& s) { return s.autograd_fallback_graph; }); py::class_(m, "GraphExecutor", py::dynamic_attr()) .def( py::init([](py::function func, py::tuple inputs, bool optimize) { auto graph = tracer::createGraphByTracing(func, toStack(inputs)); return GraphExecutor(graph, optimize); }), py::arg("func"), py::arg("inputs"), py::arg("optimize") = true) .def( py::init([](std::shared_ptr graph, bool optimize) { return GraphExecutor(std::move(graph), optimize); }), py::arg("graph"), py::arg("optimize") = true) .def("graph_for", [](GraphExecutor& ge, py::args args) { return ge.graphFor(evilDeprecatedBadCreateStackDoNotUse(args, ge.graph()->inputs())); }) .def_property_readonly("graph", [](GraphExecutor& ge) { return ge.graph(); }) .def("get_debug_state", [](GraphExecutor& ge) { return ge.getDebugState(); }) .def("__call__", [](GraphExecutor& ge, py::args args) -> py::object { const auto & graph = ge.graph(); auto stack = evilDeprecatedBadCreateStackDoNotUse(args, graph->inputs()); ge.run(stack); return createPyObjectForStack(std::move(stack)); }); py::class_(m, "PyTorchFileWriter") .def(py::init()) .def("write_record", &PyTorchFileWriter::writeRecord) .def("write_end_of_file", &PyTorchFileWriter::writeEndOfFile); py::class_(m, "PyTorchFileReader") .def(py::init()) .def("get_record_with_key", [](PyTorchFileReader &self, uint64_t key) { at::DataPtr data; size_t size; std::tie(data, size) = self.getRecordWithKey(key); return py::bytes(reinterpret_cast(data.get()), size); }) .def("get_last_record", [](PyTorchFileReader &self){ at::DataPtr data; size_t size; std::tie(data, size) = self.getLastRecord(); return py::bytes(reinterpret_cast(data.get()), size); }); m.def("_jit_get_operation", [](const std::string& qualified_name) { try { auto symbol = Symbol::fromQualString(qualified_name); auto operations = getAllOperatorsFor(std::move(symbol)); AT_CHECK(!operations.empty(), "No such operator ", qualified_name); AT_CHECK( operations.size() == 1, "Found ", operations.size(), " overloads for operator ", qualified_name, "! Overloads are not supported from Python."); std::shared_ptr op = operations[0]; AT_ASSERT(op != nullptr); std::ostringstream docstring; docstring << "Automatically bound operator '" << qualified_name << "' with schema: " << op->schema(); return py::cpp_function([op](py::args args, py::kwargs kwargs) { return invokeOperatorFromPython( *op, std::move(args), std::move(kwargs)); }, py::name(qualified_name.c_str()), py::doc(docstring.str().c_str())); } catch (const at::Error& error) { throw std::runtime_error(error.what_without_backtrace()); } }, py::arg("qualified_name")); initPythonIRBindings(module); tracer::initPythonTracerBindings(module); script::initTreeViewBindings(module); script::initJitScriptBindings(module); initBatchTensorBindings(module); initRegisterBatchOpsBindings(module); } }}