#pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include namespace py = pybind11; // This makes intrusive_ptr to be available as a custom pybind11 holder type, // see // https://pybind11.readthedocs.io/en/stable/advanced/smart_ptrs.html#custom-smart-pointers PYBIND11_DECLARE_HOLDER_TYPE(T, c10::intrusive_ptr, true); PYBIND11_DECLARE_HOLDER_TYPE(T, c10::SingletonOrSharedTypePtr); PYBIND11_DECLARE_HOLDER_TYPE(T, c10::SingletonTypePtr, true); namespace pybind11 { namespace detail { // torch.Tensor <-> at::Tensor conversions (without unwrapping) template <> struct type_caster { public: // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) PYBIND11_TYPE_CASTER(at::Tensor, _("at::Tensor")); bool load(handle src, bool) { PyObject* obj = src.ptr(); if (THPVariable_Check(obj)) { value = THPVariable_Unpack(obj); return true; } return false; } static handle cast(const at::Tensor& src, return_value_policy /* policy */, handle /* parent */) { return handle(THPVariable_Wrap(src)); } }; // torch._StorageBase <-> at::Storage template <> struct type_caster { public: // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) PYBIND11_TYPE_CASTER(at::Storage, _("at::Storage")); bool load(handle src, bool) { PyObject* obj = src.ptr(); if (torch::isStorage(obj)) { value = torch::createStorage(obj); return true; } return false; } static handle cast(const at::Storage& src, return_value_policy /* policy */, handle /* parent */) { TORCH_CHECK( false, "NotImplementedError: pybind conversion of at::Storages from C++ to python not supported."); // Storages are untyped, see: https://github.com/pytorch/pytorch/issues/47442 return handle(torch::createPyObject(src, caffe2::TypeMeta())); } }; template <> struct type_caster { public: // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) PYBIND11_TYPE_CASTER(at::Generator, _("at::Generator")); bool load(handle src, bool) { PyObject* obj = src.ptr(); if (THPGenerator_Check(obj)) { value = reinterpret_cast(obj)->cdata; return true; } return false; } static handle cast(const at::Generator& src, return_value_policy /* policy */, handle /* parent */) { return handle(THPGenerator_Wrap(src)); } }; template<> struct type_caster { public: // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) PYBIND11_TYPE_CASTER(at::IntArrayRef, _("at::IntArrayRef")); bool load(handle src, bool) { PyObject *source = src.ptr(); auto tuple = PyTuple_Check(source); if (tuple || PyList_Check(source)) { // NOLINTNEXTLINE(bugprone-branch-clone) const auto size = tuple ? PyTuple_GET_SIZE(source) : PyList_GET_SIZE(source); v_value.resize(size); for(const auto idx : c10::irange(size)) { PyObject* obj = tuple ? PyTuple_GET_ITEM(source, idx) : PyList_GET_ITEM(source, idx); if (THPVariable_Check(obj)) { v_value[idx] = THPVariable_Unpack(obj).item(); } else if (PyLong_Check(obj)) { // use THPUtils_unpackLong after it is safe to include python_numbers.h v_value[idx] = THPUtils_unpackLong(obj); } else { return false; } } value = v_value; return true; } return false; } static handle cast(at::IntArrayRef src, return_value_policy /* policy */, handle /* parent */) { return handle(THPUtils_packInt64Array(src.size(), src.data())); } private: std::vector v_value; }; template <> struct type_caster { public: // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) PYBIND11_TYPE_CASTER(at::Device, _("at::Device")); // PYBIND11_TYPE_CASTER defines a member field called value. Since at::Device // cannot be default-initialized, we provide this constructor to explicitly // initialize that field. The value doesn't matter as it will be overwritten // after a successful call to load. type_caster() : value(c10::kCPU) {} bool load(handle src, bool) { PyObject* obj = src.ptr(); if (THPDevice_Check(obj)) { value = reinterpret_cast(obj)->device; return true; } return false; } static handle cast(const at::Device& src, return_value_policy /* policy */, handle /* parent */) { return handle(THPDevice_New(src)); } }; // Pybind11 bindings for our optional type. // http://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#c-17-library-containers template struct type_caster> : optional_caster> {}; }} // namespace pybind11::detail namespace torch { namespace impl { // Use this function if you have a C++ object that is used from both C++ // and Python contexts, and you need its GIL to be released when you // destruct it in the Python context. // // This function is a valid shared_ptr destructor and can be used to // conveniently allocate a shared_ptr to an object whose destructor will be run // without the GIL. Pass it as the second argument to shared_ptr, e.g., // // shared_ptr(new T(), destroy_without_gil) // // Attaching the GIL release logic to the holder pointer rather than the // actual destructor of T is helpful when T is Python-agnostic and // shouldn't refer to the PYthon API. // // Note there are limitations to the correctness of code that makes use of this. // In particular, if a shared_ptr is constructed from C++ code without this // destructor and then passed to pybind11, pybind11 will happily take ownership // of the shared_ptr (and be willing to destruct it from a context where it is // holding the GIL). unique_ptr with a type branded deleter is less prone to // this problem, because a stock deleter unique_ptr is not convertible with it. // I plan to mitigate this problem by adding DEBUG-only asserts to the true C++ // destructors that the GIL is not held (using a virtual call to get to the // Python interpreter); alternately, we could use a virtual call to simply // ensure we release the GIL in the C++ destructor, however, this is a layering // violation (why does code that is ostensibly Python agnostic calling into the // GIL). // // Adapted from https://github.com/pybind/pybind11/issues/1446#issuecomment-406341510 template inline void destroy_without_gil(T *ptr) { // Because the ownership of a shared_ptr is diffuse, it's not possible to // necessarily predict whether or not the last reference to an object will // be destructed from Python or C++. This means that in the destructor here, // we don't necessarily know if we actually have the GIL or not; in fact, // we don't even know if the Python interpreter still exists! Thus, we have // to test for it before releasing the GIL. // // PyGILState_Check is hopefully self explanatory. But Py_IsInitialized or // _PyIsFinalizing? Both get set at the same time during the Python // destruction process: // https://github.com/python/cpython/blob/d92513390a1a0da781bb08c284136f4d7abea36d/Python/pylifecycle.c#L1716-L1717 // so the operant question is whether or not you want to release the GIL after // finalization has completed (and there is just no Python interpreter). // Clearly there is no need to release GIL in that state, so we want // Py_IsInitialized. if (Py_IsInitialized() && PyGILState_Check()) { pybind11::gil_scoped_release nogil; delete ptr; } else { delete ptr; } } } // namespace impl } // namespace torch