import contextlib import dataclasses import functools import itertools import logging import operator import re from collections import namedtuple from itertools import chain from typing import Any, Callable, ClassVar, Dict, List, NamedTuple, Optional, Set, Union import sympy from sympy.printing.printer import Printer import torch import torch.fx from torch.utils._sympy.value_ranges import ValueRanges from .. import metrics from ..utils import ( DeferredLineBase, do_bench, free_symbol_startswith, IndentedBuffer, sympy_dot, sympy_subs, unique, ) from ..virtualized import ops, OpsValue, V schedule_log = torch._logging.getArtifactLogger(__name__, "schedule") def data_type_logger(msg): if schedule_log.isEnabledFor(logging.DEBUG): schedule_log.debug("Data type propagation: %s", msg) TensorArg = namedtuple("TensorArg", ["name", "buffer", "dtype"]) SizeArg = namedtuple("SizeArg", ["name", "expr"]) DeviceCodegen = namedtuple("DeviceCodegen", ["scheduling", "wrapper_codegen"]) device_codegens: Dict[str, DeviceCodegen] = {} # The code generated by Inductor consists of two main parts: kernel code and wrapper code. # For any new backend looking to integrate with Inductor, customization of these two main # parts are necessary to generate its specific code. # # Kernel code generation is determined by different Scheduling. Consequently, a new # backend needs to provide a custom Scheduling for its unique kernel code generation. Currently, # CppScheduling and TritonScheduling serve the C++/OpenMP and Triton backends, respectively. # # For the Wrapper, Inductor provides a WrapperCodeGen class to generate the Python wrapper code # that bridges kernels. This allows out-of-tree backends to inherit from WrapperCodeGen, # and override specific member functions to create backend-specific Python wrapper code. # # Other classes, such as CppKernel and TritonKernel, used for code generation, typically form part # of the logic for either Scheduling or WrapperCodeGen. So the Scheduling and WrapperCodeGen interfaces # provide flexibility to the backend. A backend can choose to implement these classes from scratch, # or reuse them by extending and overriding as necessary. And Inductor provides the registration API, # register_backend_for_device, to equip a new backend at runtime. # # Intel has developed a new backend on top of Triton to support Intel GPUs, leveraging these interfaces. # This backend can be used as a reference: # https://github.com/intel/intel-extension-for-pytorch/blob/5dcc9d57e5422cf295e1a1ee97896d6b6a554a85/intel_extension_for_pytorch/_inductor/__init__.py#L9 def register_backend_for_device( device: str, device_scheduling: type, device_wrapper_codegen: type ): device_codegens[device] = DeviceCodegen(device_scheduling, device_wrapper_codegen) def get_scheduling_for_device(device: str): return device_codegens[device].scheduling if device in device_codegens else None def get_wrapper_codegen_for_device(device: str): return ( device_codegens[device].wrapper_codegen if device in device_codegens else None ) def index_prevent_reordering(index: List[sympy.Expr], index_vars, sizes): from ..ir import FlexibleLayout # added contiguous index prevents reordering return [*index, sympy_dot(index_vars, FlexibleLayout.contiguous_strides(sizes))] @functools.lru_cache(None) def boolean_ops(): return ( "is_inf", "is_nan", "bitwise_xor", "logical_not", "signbit", "le", "lt", "ge", "gt", "eq", "ne", ) DTYPE_TO_COMPUTATION_DTYPE = { torch.bfloat16: torch.float, torch.float16: torch.float, **{ dtype: dtype for dtype in [ torch.bool, torch.float32, torch.float64, torch.int8, torch.int16, torch.int32, torch.int64, torch.uint8, ] }, } class DataTypePropagation: def __init__(self, body) -> None: self.body = body self.graphs: Dict[Union[Callable[..., Any], str], Any] = { "root": body.root_block.graph } for k, v in body.subblocks.items(): self.graphs[k] = v.graph def deduce_node_dtype_by_inputs(self, node: torch.fx.Node): inputs = node.all_input_nodes input_nodes = [ n for n in inputs if isinstance(n, torch.fx.Node) and n.op != "placeholder" ] if len(input_nodes) == 0: return None all_input_nodes_propogated = all( OptimizationContext.key in n.meta and n.meta[OptimizationContext.key].dtype is not None for n in input_nodes ) if not all_input_nodes_propogated: return None return functools.reduce( torch.promote_types, [n.meta[OptimizationContext.key].dtype for n in input_nodes], ) def deduce_node_dtype_by_subgraph(self, node: torch.fx.Node): sub_graph = self.graphs[node.target] dtype = self.propagate_graph(sub_graph) assert dtype return dtype def deduce_node_dtype(self, node: torch.fx.Node): if node.target in boolean_ops(): return torch.bool if node.op == "placeholder": return None if node.target == "output": # we can infer output node if it only have 1 arg if len(node.args) != 1: return None if node.target in ( "to_dtype", "index_expr", ): return node.args[-1] if node.target in ( "rand", "randn", ): return torch.float if node.target in ( "get_index", "index_expr", ): return torch.int64 if node.target in ( "load", "store", "store_reduction", ): buf_name = node.args[1] return V.graph.get_dtype(buf_name) if node.target == operator.getitem: return self.deduce_node_dtype(node.args[0]) assert isinstance(node.target, str) if node.target == "reduction": return node.args[1] if node.target == "constant": return DTYPE_TO_COMPUTATION_DTYPE[node.args[-1]] if node.target.startswith("masked_subblock"): return self.deduce_node_dtype_by_subgraph(node) return self.deduce_node_dtype_by_inputs(node) def propagate_graph(self, graph: torch.fx.Graph): assert graph.nodes graph_dtype = None # For masked_subblock, we use output's dtype to represent # the dtype of this subgraph. For other cases, graph_dtype # might be None for node in graph.nodes: if OptimizationContext.key in node.meta: opt_ctx = node.meta[OptimizationContext.key] else: opt_ctx = OptimizationContext() opt_ctx.dtype = self.deduce_node_dtype(node) node.meta[OptimizationContext.key] = opt_ctx if node.target == "output": graph_dtype = opt_ctx.dtype return graph_dtype def propagate(self): self.propagate_graph(self.graphs["root"]) @classmethod def propagate_loopbody(cls, body): return cls(body).propagate() @classmethod def propagate_scheduler_node(cls, node): from ..ir import LoopBody from ..scheduler import SchedulerNode assert isinstance(node, SchedulerNode) assert isinstance(node._body, LoopBody) DataTypePropagation.propagate_loopbody(node._body) class ExprPrinter(Printer): @staticmethod def paren(string): def all_in_parens(string): if string[0] != "(" or len(string) < 2: return False count = 1 for i, char in enumerate(string[1:]): if char == "(": count += 1 elif char == ")": count -= 1 if count == 0 and i != len(string) - 2: return False assert count == 0 return True if ( isinstance(string, CSEVariable) or re.match(r"^[a-z0-9_.]+$", string, re.I) or re.match(r"^\([^)]*\)$", string, re.I) or string == "" ): return string # don't put extra parens for strings that are already wrapped in parens if all_in_parens(string): return string return f"({string})" def _print_Pow(self, expr): # Pow() confuses triton base, exp = expr.args # NB: Remember this is sizevar computation! You don't typically # expect to have to do floating point computation including exponents # in sizevar compute. Instead of adding support for floating # point pow, you should make upstream retranslate the Sympy expression # into Tensor expressions earlier and do that instead. if exp == 0.5: return self._helper_sqrt(base) # type: ignore[attr-defined] elif exp == -0.5: return "1/" + self._helper_sqrt(base) # type: ignore[attr-defined] base = self._print(base) assert exp == int(exp), exp exp = int(exp) if exp > 0: return "*".join([self.paren(base)] * exp) elif exp < 0: return "1/" + self.paren("*".join([self.paren(base)] * abs(exp))) else: # exp == 0 return "1" def _print_Unequality(self, expr): return " != ".join(map(self.paren, map(self._print, expr.args))) def _print_Mul(self, expr): return "*".join(map(self.paren, map(self._print, expr.args))) def _print_Add(self, expr): return " + ".join(map(self.paren, map(self._print, expr.args))) def _print_Mod(self, expr): return " % ".join(map(self.paren, map(self._print, expr.args))) def _print_CleanDiv(self, expr): return self._print_FloorDiv(expr) # type: ignore[attr-defined] def _print_GreaterThan(self, expr): # GreaterThan: >= # StrictlyGreaterThan: > # Go figure... return " >= ".join(map(self.paren, map(self._print, expr.args))) class PythonPrinter(ExprPrinter): def _print_ModularIndexing(self, expr): x, div, mod = expr.args x = self.paren(self.doprint(x)) div = self.paren(self.doprint(div)) mod = self.paren(self.doprint(mod)) if div != "1": x = f"({x} // {div})" return f"{x} % {mod}" def _print_FloorDiv(self, expr): x, div = expr.args x = self.paren(self.doprint(x)) div = self.paren(self.doprint(div)) return f"({x} // {div})" def _helper_sqrt(self, expr): return f"math.sqrt({self._print(expr)})" def _print_floor(self, expr): assert len(expr.args) == 1 return f"math.floor({self._print(expr.args[0])})" def _print_ceiling(self, expr): assert len(expr.args) == 1 return f"math.ceil({self._print(expr.args[0])})" class OpOverrides: def __init__(self, parent): super().__init__() self._parent = parent def __getattr__(self, item): return getattr(self._parent, item) @staticmethod def identity(value): # used to trigger cse return value @staticmethod def constant(value, dtype): return repr(value) @staticmethod def reciprocal(x): return ops.div("1", x) @staticmethod def square(x): return ops.mul(x, x) @staticmethod def bitwise_not(x): return f"~{ExprPrinter.paren(x)}" @staticmethod def logical_not(a): return f"{ExprPrinter.paren(a)} == 0" @staticmethod def bitwise_and(x, y): return f"{ExprPrinter.paren(x)} & {ExprPrinter.paren(y)}" @staticmethod def bitwise_or(x, y): return f"{ExprPrinter.paren(x)} | {ExprPrinter.paren(y)}" @staticmethod def bitwise_xor(x, y): return f"{ExprPrinter.paren(x)} ^ {ExprPrinter.paren(y)}" @staticmethod def bitwise_left_shift(x, y): return f"{ExprPrinter.paren(x)} << {ExprPrinter.paren(y)}" # TODO(fdrocha): this is currently not being used anywhere, # pending on moving triton pin past 972b761 @staticmethod def bitwise_right_shift(x, y): return f"{ExprPrinter.paren(x)} >> {ExprPrinter.paren(y)}" @staticmethod def remainder(a, b): r = ops.mod(a, b) return ops.where(f"(({r} != 0) & (({r} < 0) != ({b} < 0)))", ops.add(r, b), r) @staticmethod def load_seed(name, offset): return ops.load(name, sympy.Integer(offset)) class DeferredLine(DeferredLineBase): """A line that can be 'unwritten' by adding name to V.graph.removed_buffers""" def __init__(self, name, line): super().__init__(line) self.name = name def __call__(self): # V.kernel may be null since this method may be called for the # wrapper codegen where there is no specific kernel. if ( self.name not in ( V.graph.removed_buffers | getattr(V.kernel, "removed_buffers", set()) ) and self.name not in V.graph.inplaced_to_remove ): return self.line return None def _new_line(self, line): return DeferredLine(self.name, line) class BracesBuffer(IndentedBuffer): def indent(self, offset=1): @contextlib.contextmanager def ctx(): for _ in range(offset): self.writeline("{") self._indent += 1 for _ in range(-offset): self._indent -= 1 self.writeline("}") yield for _ in range(-offset): self.writeline("{") self._indent += 1 for _ in range(offset): self._indent -= 1 self.writeline("}") return ctx() class InplacedBuffer(NamedTuple): inner_name: str other_names: List[str] class KernelArgs: @staticmethod def _lookup(prefix, odict, name): assert isinstance(name, (str, sympy.Symbol)) if name not in odict: odict[name] = f"{prefix}{len(odict)}" return odict[name] def __init__(self, sizevars=None): self.input_buffers = dict() self.output_buffers = dict() self.inplace_buffers = dict() self.sizevars = sizevars or dict() def __repr__(self): return "KernelArgs({})".format( ", ".join( map( repr, [ self.input_buffers, self.output_buffers, self.inplace_buffers, self.sizevars, ], ) ) ) def _buffer_is_marked_removed(self, name): return isinstance(name, str) and name.startswith("REMOVED") def input(self, name): if V.graph.scheduler: name = V.graph.scheduler.mutation_real_name.get(name, name) assert name not in V.graph.removed_buffers, name if name in self.output_buffers: return self.output_buffers[name] if name in self.inplace_buffers: return self.inplace_buffers[name].inner_name if name.startswith("seed"): return self._lookup("seed", self.input_buffers, name) return self._lookup("in_ptr", self.input_buffers, name) def output(self, name): if V.graph.scheduler: name = V.graph.scheduler.mutation_real_name.get(name, name) assert name not in V.graph.removed_buffers, name if name in self.inplace_buffers: return self.inplace_buffers[name].inner_name return self._lookup("out_ptr", self.output_buffers, name) def make_inplace(self, input_name, output_name): assert output_name not in self.inplace_buffers if input_name in self.inplace_buffers: buf = self.inplace_buffers[input_name] buf.other_names.append(output_name) self.inplace_buffers[output_name] = buf else: buf = InplacedBuffer( f"in_out_ptr{len(unique(self.inplace_buffers.values()))}", [input_name, output_name], ) self.inplace_buffers[input_name] = buf self.inplace_buffers[output_name] = buf def seed_offset(self, name, value): if value in self.sizevars: return self.sizevars[value] if name in self.sizevars.values(): name = ( f"{name}{sum(1 for v in self.sizevars.values() if v.startswith(name))}" ) self.sizevars[value] = name return name def size(self, name): if str(name) == "seed": self.sizevars["seed"] = "seed" return "seed" return self._lookup("ks", self.sizevars, name) def call_names(self): return chain( self.input_buffers.keys(), self.output_buffers.keys(), self.sizevars.keys() ) def wrap_ptr_arg(self, buf, dtype): return f"c_void_p({buf}.data_ptr())" def wrap_size_arg(self, size): return f"c_long({size})" def cpp_argdefs(self): from .cpp import DTYPE_TO_CPP, INDEX_TYPE call_args = [] arg_defs = [] arg_types = [] for inplaced in unique(self.inplace_buffers.values()): if self._buffer_is_marked_removed(inplaced): continue outer = inplaced.other_names[-1] inner = inplaced.inner_name dtype = V.graph.get_dtype(outer) cpp_dtype = DTYPE_TO_CPP[dtype] arg_defs.append(f"{cpp_dtype}* {inner}") call_args.append(self.wrap_ptr_arg(outer, dtype)) arg_types.append(f"{cpp_dtype}*") for outer, inner in self.input_buffers.items(): if outer in self.inplace_buffers: continue dtype = V.graph.get_dtype(outer) cpp_dtype = DTYPE_TO_CPP[dtype] arg_defs.append(f"const {cpp_dtype}* {inner}") call_args.append(self.wrap_ptr_arg(outer, dtype)) arg_types.append(f"const {cpp_dtype}*") for outer, inner in self.output_buffers.items(): if outer in self.inplace_buffers or self._buffer_is_marked_removed(inner): continue dtype = V.graph.get_dtype(outer) cpp_dtype = DTYPE_TO_CPP[dtype] arg_defs.append(f"{cpp_dtype}* {inner}") call_args.append(self.wrap_ptr_arg(outer, dtype)) arg_types.append(f"{cpp_dtype}*") for outer, inner in self.sizevars.items(): arg_defs.append(f"const {INDEX_TYPE} {inner}") call_args.append(self.wrap_size_arg(outer)) arg_types.append(f"const {INDEX_TYPE}") return arg_defs, call_args, arg_types def python_argdefs(self): arg_defs = [] call_args = [] precompile_args: List[Union[TensorArg, SizeArg]] = [] for inplaced in unique(self.inplace_buffers.values()): if self._buffer_is_marked_removed(inplaced): continue arg_defs.append(inplaced.inner_name) call_args.append(inplaced.other_names[-1]) precompile_args.append( TensorArg( inplaced.inner_name, inplaced.other_names[-1], V.graph.get_dtype(inplaced.other_names[-1]), ) ) for outer, inner in chain( self.input_buffers.items(), self.output_buffers.items() ): if outer in self.inplace_buffers or self._buffer_is_marked_removed(inner): continue arg_defs.append(inner) call_args.append(outer) precompile_args.append(TensorArg(inner, outer, V.graph.get_dtype(outer))) for outer, inner in self.sizevars.items(): arg_defs.append(inner) call_args.append(outer) precompile_args.append(SizeArg(inner, outer)) return arg_defs, call_args, precompile_args def aliases(self): for inplaced in unique(self.inplace_buffers.values()): if self._buffer_is_marked_removed(inplaced): continue for other in inplaced.other_names: if other in V.graph.inplaced_to_remove: continue if other in self.input_buffers: yield self.input_buffers[other], inplaced.inner_name if other in self.output_buffers: yield self.output_buffers[other], inplaced.inner_name def is_removed(self, name): def _is_removed(name, buffers): return name not in buffers or self._buffer_is_marked_removed(buffers[name]) return _is_removed(name, self.output_buffers) and _is_removed( name, self.inplace_buffers ) # Includes inplace buffers, excludes removed buffers. Essentially, # after you do a call into this kernel, which buffers actually contain # updated data? Modeled off of python_argdefs. def live_output_buffers(self): live_outs = set() for inplaced in unique(self.inplace_buffers.values()): if self._buffer_is_marked_removed(inplaced): continue live_outs.add(inplaced.other_names[-1]) for outer, inner in self.output_buffers.items(): if outer in self.inplace_buffers or self._buffer_is_marked_removed(inner): continue live_outs.add(outer) return live_outs class CSEVariable: """A CSEVariable is just a name for an expression but it is useful to be able to annotate them on a backend dependent basis. To do so, the backends can simply overload `Kernel.create_cse_var` The "CSEVariable.update_on_args" method gives you a hook for annotations See example of TritonCSEVariable in triton.py """ def __init__(self, name, bounds: ValueRanges): assert isinstance(bounds, ValueRanges) self.name = name self.bounds = bounds def __str__(self): return self.name def __hash__(self) -> int: return hash(self.name) def __eq__(self, other) -> bool: return type(other) == type(self) and other.name == self.name def update_on_args(self, name, args, kwargs): pass class CppWrapperKernelArgs(KernelArgs): def wrap_ptr_arg(self, buf, dtype): from .cpp import DTYPE_TO_CPP return f"({DTYPE_TO_CPP[dtype]}*)({buf}.data_ptr())" def wrap_size_arg(self, size): return f"{size}" class CSE: """Common subexpression elimination""" def __init__( self, prefix="", suffix="", name_prefix="tmp", iter_buffers=None, store_cache=None, reduction_cache=None, varname_map=None, ): self.prefix = prefix self.suffix = suffix self.cache = {} self.name_prefix = name_prefix self.store_cache = store_cache or {} self.reduction_cache = reduction_cache or {} self.iter_buffer_ids = iter_buffers or itertools.count() self.invalidated_stores = set() self.varname_map = varname_map or {} def invalidate(self, keep_vars: Set[str]): for name, tmp in list(self.store_cache.items()): if tmp not in keep_vars: del self.store_cache[name] self.invalidated_stores.add(name) self.cache = {k: v for k, v in self.cache.items() if v in keep_vars} def clone(self): # Note(fdrocha): reduction_cache is not being cloned, not sure if this is intentional return CSE( prefix=self.prefix, suffix=self.suffix, name_prefix=self.name_prefix, iter_buffers=self.iter_buffer_ids, store_cache=self.store_cache, varname_map=self.varname_map, ) def generate( self, buffer: IndentedBuffer, expr: Union[str, CSEVariable, OpsValue], *, bounds: ValueRanges = ValueRanges.unknown(), write=True, assignment=True, ) -> CSEVariable: if isinstance(expr, OpsValue): expr = expr.value assert isinstance(expr, (str, CSEVariable)), type(expr) assert write or assignment if isinstance(expr, CSEVariable): # If the expressions were always created with all the information, we could # assert expr.bounds == bounds, but sometimes the expression is created # with the loose ValueRanges.unknown(), so we need to tighten the bounds expr.bounds = expr.bounds.tighten(bounds) return expr cache_key = expr var = self.cache.get(cache_key, None) if not var: var = self.newvar(bounds) if assignment else None self.cache[cache_key] = var if write: if V.kernel.current_node: V.kernel.current_node.codegen_originating_info( buffer, only_once=True ) if assignment: line = f"{self.prefix}{var} = {expr}{self.suffix}" else: line = f"{expr}{self.suffix}" buffer.writeline(line) else: var.bounds = var.bounds.tighten(bounds) return var def newvar(self, bounds: ValueRanges = ValueRanges.unknown()) -> CSEVariable: var_name = f"{self.name_prefix}{next(self.iter_buffer_ids)}" var = V.kernel.create_cse_var(var_name, bounds) self.varname_map[var_name] = var return var class CodeGen: def __init__(self): super().__init__() self.exit_stack = contextlib.ExitStack() def __enter__(self): self.exit_stack.__enter__() return self def __exit__(self, exc_type, exc_val, exc_tb): self.exit_stack.__exit__(exc_type, exc_val, exc_tb) class Kernel(CodeGen): newvar_prefix = "" suffix = "" overrides = None load_format = None store_format = None def __init__(self, args=None, increase_kernel_count=True): super().__init__() if increase_kernel_count: metrics.generated_kernel_count += 1 self.args = args or KernelArgs() self.loads = IndentedBuffer() self.compute = IndentedBuffer() self.stores = IndentedBuffer() self.cse = CSE(self.newvar_prefix, self.suffix) self.must_keep_buffers = set() self.store_buffer_names = set() # set in set_current_node self.current_node = None self.node_to_bounds: Optional[Dict[torch.fx.Node, ValueRanges]] = None self.removed_buffers = set() # key: the buffer to write # value: the buffer to read and whose memory can be reused for # the buffer specified by key self.inplace_update_buffers = dict() @contextlib.contextmanager def set_current_node(self, node): prior = self.current_node self.current_node = node self.node_to_bounds = node._body.bounds().get_bounds() try: yield finally: self.current_node = prior @contextlib.contextmanager def swap_buffers(self, lb, cb=None, sb=None): if cb is None: cb = lb loads = self.loads compute = self.compute stores = self.stores cse = self.cse self.loads = lb self.compute = cb self.stores = sb self.cse = cse.clone() try: yield finally: self.loads = loads self.compute = compute self.stores = stores self.cse = cse def load(self, name: str, index: sympy.Expr): raise NotImplementedError() def indirect_load(self, name: str, index: sympy.Expr): """A load the depends on an index we have read""" prior = self.loads try: # put the load in the compute section as it might have deps self.loads = self.compute return self.load(name, index) finally: self.loads = prior def store_reduction(self, name, index, value): raise NotImplementedError() def store(self, name, index, value, mode=None): raise NotImplementedError() def reduction(self, dtype, src_dtype, reduction_type, value): raise NotImplementedError() def bucketize( self, values, offsets_name: str, offsets_size: sympy.Expr, indexing_dtype: torch.dtype, right: bool, ): """ See [Note: Inductor bucketize op] """ raise NotImplementedError() def __enter__(self): class CSEProxy: self.name = "CSEProxy" @staticmethod def __getattr__(name: str) -> Callable[..., CSEVariable]: # type: ignore[misc] def inner(*args, **kwargs): # TritonTemplateKernel has no current_node buf_bounds = ValueRanges.unknown() if hasattr(V.interpreter, "current_node"): fx_node = V.interpreter.current_node assert isinstance(self.node_to_bounds, dict) buf_bounds = self.node_to_bounds.get( fx_node, ValueRanges.unknown() ) csevar = self.cse.generate( self.compute, getattr(parent_handler, name)(*args, **kwargs), # type: ignore[has-type] bounds=buf_bounds, ) csevar.update_on_args(name, args, kwargs) return csevar return inner @staticmethod def indirect_indexing(index_var, size, check=True): # Skip CSE since this doesn't return an expression return self.indirect_indexing(index_var, size, check) # type: ignore[attr-defined] @staticmethod def load(name: str, index: sympy.Expr): if name in self.cse.invalidated_stores: # A load from an invalidated store requires us to # keep the actual buffer around V.kernel.must_keep_buffers.add(name) if free_symbol_startswith(index, "tmp"): return self.indirect_load(name, index) store_cache = self.cse.store_cache if name in store_cache: return store_cache[name] return self.load(name, index) @staticmethod def store(name, index, value, mode=None): self.store_buffer_names.add(name) if mode is None: self.cse.store_cache[name] = value if self.current_node: for other_name in self.current_node.get_mutations(): self.cse.store_cache[other_name] = value if name not in V.graph.removed_buffers: return self.store(name, index, value, mode=mode) @staticmethod def store_reduction(name, index, value): self.store_buffer_names.add(name) self.cse.store_cache[name] = value if self.current_node: for other_name in self.current_node.get_mutations(): self.cse.store_cache[other_name] = value if name not in V.graph.removed_buffers: return self.store_reduction(name, index, value) @staticmethod def reduction(dtype, src_dtype, reduction_type, value): return self.reduction(dtype, src_dtype, reduction_type, value) @staticmethod def bucketize( values, offsets_name: str, offsets_size: sympy.Expr, indexing_dtype: torch.dtype, right: bool, ): """ [Note: Inductor bucketize op] Given values (tensor) and offsets_name (reference to the name of a 1D tensor), calculate the bucket that each value belongs to. e.g. for values [-1, 0, 1, 2, 3, 4, 5, 9], offsets [0, 4, 4, 8], right=True return = [ 0, 1, 1, 1, 1, 3, 3, 4]. When right == False, bucket i refers to range (offsets[i], offsets[i+1]]. When right == True, bucket i refers to range [offsets[i], offsets[i+1]). Offsets must be non-decreasing or the result is undefined. """ return self.bucketize( values, offsets_name, offsets_size, indexing_dtype, right ) super().__enter__() assert self.overrides parent_handler = self.overrides(V.get_ops_handler()) self.exit_stack.enter_context(V.set_ops_handler(CSEProxy())) self.exit_stack.enter_context(V.set_kernel_handler(self)) return self def __exit__(self, exc_type, exc_val, exc_tb): """ Note that V.graph.scheduler can be None when codegening triton template kernels. """ if V.graph.scheduler: V.graph.scheduler.remove_kernel_local_buffers() super().__exit__(exc_type, exc_val, exc_tb) def rename_indexing(self, index) -> sympy.Expr: # adds the necessary kernel args for index expressions # and renames variables in index expressions to kernel arg names if isinstance(index, (list, tuple)): return [self.rename_indexing(x) for x in index] index = V.graph.sizevars.simplify(index) sorted_symbols = sorted(index.free_symbols, key=lambda s: s.name) replacements = { x: self.args.size(x) for x in sorted_symbols if x.name.startswith("s") or x.name.startswith("ps") } return sympy_subs(index, replacements) def create_cse_var(self, *args, **kwargs): return CSEVariable(*args, **kwargs) @dataclasses.dataclass class OptimizationContext: key: ClassVar[str] = "opt_ctx" # Load value as mask is_load_as_mask: bool = False dtype: torch.dtype = None ops_name: str = "" is_most_inner_loop_irrevelant: bool = False # Load uint8 value as float32 is_load_uint8_as_float: bool = False @functools.lru_cache(None) def jinja2_env(): try: import jinja2 return jinja2.Environment( undefined=jinja2.StrictUndefined, ) except ImportError: return None class ChoiceCaller: """ Represents a possible choice used in autotune_process.py. During autotuning, self.benchmark() is first called to get benchmark result, and if this choice is selected, self.output_node() is called to get the output_node. Children classes: TritonTemplateCaller, CUDATemplateCaller. """ def __init__(self, name, input_nodes, layout): super().__init__() self.name = name self.layout = layout self.input_nodes = input_nodes def benchmark(self, *args, out) -> float: algo = self.to_callable() return do_bench(lambda: algo(*args, out=out)) def call_name(self) -> str: raise NotImplementedError() def to_callable(self): raise NotImplementedError() def hash_key(self) -> str: raise NotImplementedError() def output_node(self) -> "TensorBox": # type: ignore[name-defined] raise NotImplementedError() class KernelTemplate: """ Base class for defining kernel templates. Children classes: TritonTemplate, CUDATemplate """ @staticmethod def _template_from_string(source): env = jinja2_env() if env is not None: return env.from_string(source) return None @staticmethod def _fake_get_dtype(fake_out): _get_dtype_real = V.graph.get_dtype def get_dtype(name): if name == fake_out.get_name(): return fake_out.get_dtype() return _get_dtype_real(name) return get_dtype def __init__(self, name: str): self.name = name def maybe_append_choice(self, choices, **kwargs): """ Maybe generates a new ChoiceCaller and appends it into existing choices. choices: A list of ChoiceCallers. kwargs: Additional kwargs to be passed to self.generate() to generate a new ChoiceCaller. """ try: choices.append(self.generate(**kwargs)) except NotImplementedError: pass def generate(self, **kwargs) -> ChoiceCaller: """ Generates a ChoiceCaller instance from the given arguments. """ raise NotImplementedError()