import dataclasses import functools import itertools import logging import sys import warnings from copy import deepcopy from functools import wraps from typing import Any, Callable, Dict, List, Optional from functorch.compile import min_cut_rematerialization_partition import torch._dynamo.config as dynamo_config import torch._functorch.config as functorch_config import torch.fx import torch.utils._pytree as pytree from torch._dynamo import logging as dynamo_logging, utils as dynamo_utils from torch._dynamo.utils import defake, detect_fake_mode from torch._functorch.aot_autograd import make_boxed_func from torch._ops import OpOverload from torch._subclasses.fake_tensor import FakeTensor from torch.fx.passes.fake_tensor_prop import FakeTensorProp from .._dynamo.backends.common import aot_autograd from ..fx.graph import _PyTreeCodeGen from . import config, metrics from .debug import DebugContext from .decomposition import select_decomp_table from .fx_passes.joint_graph import joint_graph_passes from .fx_passes.post_grad import post_grad_passes, view_to_reshape from .fx_passes.pre_grad import pre_grad_passes from .graph import GraphLowering from .pattern_matcher import clone_graph from .utils import get_dtype_size, has_incompatible_cudagraph_ops from .virtualized import V if config.is_fbcode(): from torch._inductor.fb.logging import time_and_log else: # no-op decorator def time_and_log(attr: str): def wrap(old_func): @wraps(old_func) def newFunction(*args, **kwargs): return old_func(*args, **kwargs) return newFunction return wrap log = logging.getLogger(__name__) perf_hint_log = torch._logging.getArtifactLogger(__name__, "perf_hints") ALIGNMENT = 16 @dataclasses.dataclass class BoxedBool: value: bool def __bool__(self): return self.value @staticmethod def disable(obj): if isinstance(obj, BoxedBool): obj.value = False return obj return False @dataclasses.dataclass class BoxedDeviceIndex: value: Optional[int] def set(self, device_idx): assert device_idx is None or isinstance(device_idx, int) self.value = device_idx # copy_ fails when trying to write to tensors with memory overlap, # for expanded dimensions (a dimension which used to have size 1 -> ?) # we can select one element from that dimension and write to it # to achieve writing to all values of that dimension of the input tensor def get_expanded_dims(t): return [i for i in range(t.ndim) if t.stride(i) == 0 and t.size(i) != 1] def index_expanded_dims(t, expanded_dims): for expanded_dim in expanded_dims: t = torch.ops.aten.slice(t, expanded_dim, 0, 1) return t def complex_memory_overlap(t): # if torch._debug_has_internal_overlap thinks this tensor potentially has # memory overlap internally, let's dig deeper to find out whether it's true. t = index_expanded_dims(t, get_expanded_dims(t)) if torch._debug_has_internal_overlap(t) != 0: strides = t.stride() sizes = t.shape indices = list(range(len(strides))) indices = [x for _, x in sorted(zip(strides, indices))] for i in range(len(strides)): prev_stride = 1 if i == 0 else strides[indices[i - 1]] prev_size = 1 if i == 0 else sizes[indices[i - 1]] if strides[indices[i]] < prev_stride * prev_size: return True return False @functools.lru_cache(None) def _step_logger(): return dynamo_logging.get_step_logger(log) @functools.lru_cache(None) def _warn_tf32_disabled(): if ( torch.cuda.is_available() and not torch.backends.cuda.matmul.allow_tf32 and torch.cuda.get_device_capability() >= (8, 0) ): warnings.warn( "TensorFloat32 tensor cores for float32 matrix multiplication available but not enabled. " "Consider setting `torch.set_float32_matmul_precision('high')` for better performance." ) def is_tf32_warning_applicable(gm: torch.fx.GraphModule): aten = torch.ops.aten tf32_ops = { aten.mm.default, aten.addmm.default, aten.bmm.default, aten.baddbmm.default, } for node in gm.graph.nodes: if ( node.op == "call_function" and node.target in tf32_ops and isinstance(node.meta.get("val", None), torch.Tensor) and node.meta["val"].dtype == torch.float32 and node.meta["val"].device.type == "cuda" ): return True return False @DebugContext.wrap def count_bytes_inner(gm, example_inputs, num_fixed=0, **kwargs): shape_env = _shape_env_from_inputs(example_inputs) graph = GraphLowering(gm, shape_env=shape_env, num_static_inputs=num_fixed) with V.set_graph_handler(graph): graph.run(*example_inputs) num_bytes, nodes_num_elem = graph.count_bytes() metrics.num_bytes_accessed += num_bytes metrics.nodes_num_elem += nodes_num_elem return make_boxed_func(gm.forward) def inner_compile_with_cpp_wrapper(inner_compile): @functools.wraps(inner_compile) def wrapper(gm: torch.fx.GraphModule, example_inputs: List[torch.Tensor], **kwargs): """ Compile into cpp wrapper: For CPU, this is currently done in one pass. For GPU, this is done in two passes: JIT-compile the model with python wrapper code and run it to generate autotuned kernel binaries in the first pass; and then generate cpp wrapper code and compile it to a dynamic library in the second pass. """ devices = ( {t.device.type for t in gm.parameters()} | {t.device.type for t in gm.buffers()} | {t.device.type for t in example_inputs if isinstance(t, torch.Tensor)} ) if "cuda" not in devices: kwargs_patched = {**kwargs, "cpp_wrapper": True} return inner_compile(gm, example_inputs, **kwargs_patched) else: with config.patch( { "triton.store_cubin": True, } ): # first pass with regular python wrapper code kwargs_patched = { **kwargs, "aot_mode": False, "cpp_wrapper": False, "cudagraphs": False, } # clone_graph(gm) makes sure no graph modification from the first pass will # leak to the second pass. It does increase memory pressure, but the problem # can be alleviated once we have parameters as FakeTensor. compiled = inner_compile( clone_graph(gm), example_inputs, **kwargs_patched ) if detect_fake_mode(example_inputs): def materialize(x): if isinstance(x, (torch.SymInt, torch.SymFloat)): # Need concrete value to run dynamic shapes and tune the result return x.node.hint else: # TODO: the defaked value may be problematic in some cases return defake(x) with torch.utils._python_dispatch._disable_current_modes(): inputs_real = [materialize(t) for t in example_inputs] else: inputs_real = deepcopy(example_inputs) with torch.utils._python_dispatch._disable_current_modes(): compiled(inputs_real) del inputs_real # second pass kwargs_patched = {**kwargs, "cpp_wrapper": True, "cudagraphs": False} return inner_compile(gm, example_inputs, **kwargs_patched) return wrapper @DebugContext.wrap @torch.utils._python_dispatch._disable_current_modes() @time_and_log(attr="compilation time (in seconds)") def compile_fx_inner( gm: torch.fx.GraphModule, example_inputs: List[torch.Tensor], cudagraphs=None, num_fixed=0, is_backward=False, graph_id=None, cpp_wrapper=False, aot_mode=False, is_inference=False, boxed_forward_device_index=None, user_visible_outputs=frozenset(), ): if is_tf32_warning_applicable(gm): _warn_tf32_disabled() if dynamo_utils.count_calls(gm.graph) == 0: return make_boxed_func(gm.forward) # lift the maximum depth of the Python interpreter stack # to adapt large/deep models sys.setrecursionlimit(max(sys.getrecursionlimit(), 2000)) _step_logger()( logging.INFO, "torchinductor compiling " f"{'BACKWARDS' if is_backward else 'FORWARDS'} " f"graph {graph_id}", ) V.debug.fx_graph(gm, example_inputs) if cudagraphs is None: cudagraphs = config.triton.cudagraphs shape_env = _shape_env_from_inputs(example_inputs) # Convert view to reshape in the graph. This is necessary primarily for # layout optimization. Do it unconditionally for uniformity. # # It's needed because when we do layout optimization, an contiguous tensor # in eager mode may becomes a channels last tensor. A view op previously # can be applied to the contiguous tensor may not be able to be applied # on the channels tensor any more. An error like # RuntimeError: view size is not compatible with input tensor's size and stride # (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead. # will be printed. # # Replace view op to reshape op in this case. # As an example, timm_resnest/botnet26t_256/convnext_base etc. will fail if we don't do this. # # Also this has to be done before FakeTensorProp below to avoid the failed # .view() call. view_to_reshape(gm) fake_mode = detect_fake_mode(example_inputs) if not fake_mode: fake_mode = torch._subclasses.FakeTensorMode(allow_non_fake_inputs=True) FakeTensorProp(gm, mode=fake_mode).propagate(*example_inputs) else: FakeTensorProp(gm, mode=fake_mode).propagate_dont_convert_inputs( *example_inputs ) # pattern matcher passes might not preserve striding information # on node.meta["val"]. if in the future we rely on these being # correct we will need to fix. with V.set_fake_mode(fake_mode): # has some issues with memory in training locality_reorder = is_inference and config.reordering post_grad_passes(gm, locality_reorder=locality_reorder) V.debug.fx_graph_transformed(gm, example_inputs) with V.set_fake_mode(fake_mode): graph = GraphLowering( gm, shape_env=shape_env, num_static_inputs=num_fixed, graph_id=graph_id, cpp_wrapper=cpp_wrapper, aot_mode=aot_mode, user_visible_outputs=user_visible_outputs, ) with V.set_graph_handler(graph): graph.run(*example_inputs) compiled_fn = graph.compile_to_fn() if aot_mode: return compiled_fn if cudagraphs: # output args are tuple of first argument output = list(gm.graph.nodes)[-1] assert len(output.args) == 1 stack_traces = [ (arg.stack_trace if isinstance(arg, torch.fx.node.Node) else None) for arg in output.args[0] ] complex_memory_overlap_inputs = any( complex_memory_overlap(t) for t in example_inputs if isinstance(t, torch.Tensor) ) if ( set(graph.device_types) == {"cuda"} and not graph.mutated_inputs and not has_incompatible_cudagraph_ops(gm) and not complex_memory_overlap_inputs and all(isinstance(t, torch.Tensor) for t in example_inputs) and (len(graph.device_idxs) == 1 or not config.triton.cudagraph_trees) ): if ( boxed_forward_device_index is not None and not is_inference and not is_backward ): boxed_forward_device_index.set(next(iter(graph.device_idxs))) compiled_fn = cudagraphify( compiled_fn, example_inputs, static_input_idxs=range(num_fixed), device_index=next(iter(graph.device_idxs)), stack_traces=stack_traces, is_backward=is_backward, is_inference=is_inference, ) else: BoxedBool.disable(cudagraphs) # See [Backward Generation Handling] # if cudagraph'd the forward and set the device, we need to let the cudagraph manager # know we are we running the backward even if we will not run it in cudagraphs if is_backward and config.triton.cudagraph_trees: assert boxed_forward_device_index.value is not None compiled_fn_inner = compiled_fn manager = torch._inductor.cudagraph_trees.get_manager( boxed_forward_device_index.value, create_if_none_exists=False ) # should already exist from forward assert manager is not None def compiled_fn(new_inputs): manager.set_to_running_backward() return compiled_fn_inner(new_inputs) if len(set(graph.device_types)) > 1: perf_hint_log.warning("skipping cudagraphs due to multiple devices") elif set(graph.device_types) == {"cuda"}: if graph.mutated_inputs: perf_hint_log.warning("skipping cudagraphs due to input mutation") elif complex_memory_overlap_inputs: perf_hint_log.warning( "skipping cudagraphs due to complex input striding" ) elif len(graph.device_idxs) > 1 and config.triton.cudagraph_trees: perf_hint_log.warning( "skipping cudagraphs due to multiple device indexes" ) result = align_inputs(compiled_fn, example_inputs, range(num_fixed)) _step_logger()( logging.INFO, "torchinductor done compiling " f"{'BACKWARDS' if is_backward else 'FORWARDS'} " f"graph {graph_id}", ) # aot autograd needs to know to pass in inputs as a list result._boxed_call = True return result def clone_preserve_strides(x): needed_size = ( sum((shape - 1) * stride for shape, stride in zip(x.size(), x.stride())) + 1 ) buffer = torch.as_strided(x, (needed_size,), (1,)).clone() return torch.as_strided(buffer, x.size(), x.stride()) def align_inputs(model, inputs, static_input_idxs=()): def is_aligned(storage_offset, dtype): return (storage_offset * get_dtype_size(dtype)) % ALIGNMENT == 0 check_inputs = [ i for i in range(len(inputs)) if isinstance(inputs[i], torch.Tensor) and ( i not in static_input_idxs or not is_aligned(inputs[i].storage_offset(), inputs[i].dtype) ) and inputs[i].device.type == "cuda" ] if len(check_inputs) == 0: return model def run(new_inputs): for i in check_inputs: if new_inputs[i].data_ptr() % ALIGNMENT: new_inputs[i] = clone_preserve_strides(new_inputs[i]) return model(new_inputs) return run @dynamo_utils.dynamo_timed def cudagraphify( model, inputs, static_input_idxs=(), *, device_index: int, stack_traces: List[Optional[str]], is_backward: bool, is_inference: bool, ): from torch._inductor.cudagraph_trees import ( cudagraphify_impl as new_cudagraphify_impl, ) if config.triton.cudagraph_trees: cudagraphify_fn = functools.partial( new_cudagraphify_impl, device_index=device_index, stack_traces=stack_traces, is_backward=is_backward, is_inference=is_inference, ) else: cudagraphify_fn = cudagraphify_impl # if using fake tensors, defer cudagraphs until we get real inputs at runtime if not any(isinstance(inp, FakeTensor) for inp in inputs): return cudagraphify_fn(model, inputs, static_input_idxs) compiled_fn = None def run(new_inputs): nonlocal compiled_fn if compiled_fn is None: with dynamo_utils.preserve_rng_state(): compiled_fn = cudagraphify_fn(model, new_inputs, static_input_idxs) return compiled_fn(new_inputs) return run def remove_unaligned_input_idxs(inputs, static_input_idxs): """ We require all inputs to be aligned, so introduce a copy for any that aren't. """ aligned_static_input_idxs = { idx for idx in static_input_idxs if (inputs[idx].data_ptr() % ALIGNMENT) == 0 } if len(aligned_static_input_idxs) != len(static_input_idxs): return aligned_static_input_idxs return static_input_idxs def static_input(x): """ Copy and input while preserving strides """ # TODO(jansel): figure out why this version doesn't work: # return torch.empty_strided(x.size(), x.stride(), dtype=x.dtype, device=x.device) needed_size = ( sum((shape - 1) * stride for shape, stride in zip(x.size(), x.stride())) + 1 ) buffer = torch.empty(needed_size, dtype=x.dtype, device=x.device) return torch.as_strided(buffer, x.size(), x.stride()) def index_expanded_dims_and_copy_(dst, src, expanded_dims): "Index into expanded dimensions of both dst and src then copy_" dst = index_expanded_dims(dst, expanded_dims) src = index_expanded_dims(src, expanded_dims) dst.copy_(src) def cudagraphify_impl(model, inputs, static_input_idxs=()): """ Assumes inputs[static_input_idxs[i]] are always the same memory address """ static_input_idxs = remove_unaligned_input_idxs(inputs, static_input_idxs) assert isinstance(inputs, (list, tuple)) inps_expanded_dims = [ get_expanded_dims(x) if idx not in static_input_idxs else [] for idx, x in enumerate(inputs) ] # allocate static tensor inputs static_inputs = [ static_input(x) if idx not in static_input_idxs else x.detach() for idx, x in enumerate(inputs) ] # copy over input values for fresh allocations for idx, (x, expanded_dims) in enumerate(zip(inputs, inps_expanded_dims)): if idx not in static_input_idxs: index_expanded_dims_and_copy_(static_inputs[idx], x, expanded_dims) # warmup torch.cuda.synchronize() stream = torch.cuda.Stream() stream.wait_stream(torch.cuda.current_stream()) # copy static_inputs because it will be cleared in model with torch.cuda.stream(stream): model(list(static_inputs)) stream.synchronize() torch.cuda.current_stream().wait_stream(stream) torch.cuda.synchronize() # record graph = torch.cuda.CUDAGraph() with torch.cuda.graph(graph, stream=stream): static_outputs = model(list(static_inputs)) if not isinstance(static_outputs, (list, tuple)): static_outputs = (static_outputs,) if config.size_asserts: def run(new_inputs): assert len(static_inputs) == len(new_inputs) for idx, (dst, src, expanded_dims) in enumerate( zip(static_inputs, new_inputs, inps_expanded_dims) ): if idx in static_input_idxs: assert dst.data_ptr() == src.data_ptr() else: # TODO - could make one single op of multiple slices # and avoid dispatch. # Could also pre-index the `dst` tensors index_expanded_dims_and_copy_(dst, src, expanded_dims) new_inputs.clear() graph.replay() return static_outputs else: copy_indices = [ idx for idx in range(len(static_inputs)) if idx not in static_input_idxs ] def run(new_inputs): for idx in copy_indices: expanded_dims = inps_expanded_dims[idx] index_expanded_dims_and_copy_( static_inputs[idx], new_inputs[idx], expanded_dims ) new_inputs.clear() graph.replay() return static_outputs return run def count_tangents(fx_g: torch.fx.GraphModule): """ Infers which inputs are static for a backwards graph """ def is_saved_tensor(x): return ( "tangents" not in x.name and "bwd_seed" not in x.name and "bwd_base_offset" not in x.name ) arg_count = 0 static_arg_idxs = [] for n in fx_g.graph.nodes: if n.op == "placeholder": if is_saved_tensor(n): static_arg_idxs.append(arg_count) arg_count += 1 assert static_arg_idxs == list(range(len(static_arg_idxs))) return len(static_arg_idxs) def compile_fx_aot( model_: torch.fx.GraphModule, example_inputs_: List[torch.Tensor], inner_compile=compile_fx_inner, config_patches: Optional[Dict[str, Any]] = None, ): config_patches = ( {"cpp_wrapper": True} if config_patches is None else {**config_patches, "cpp_wrapper": True} ) return compile_fx( model_, example_inputs_, inner_compile=functools.partial(inner_compile, aot_mode=True), config_patches=config_patches, ) _graph_counter = itertools.count(0) def compile_fx( model_: torch.fx.GraphModule, example_inputs_: List[torch.Tensor], inner_compile=compile_fx_inner, config_patches: Optional[Dict[str, Any]] = None, decompositions: Optional[Dict[OpOverload, Callable]] = None, ): """Main entrypoint to a compile given FX graph""" if config_patches: with config.patch(config_patches): return compile_fx( model_, example_inputs_, # need extra layer of patching as backwards is compiled out of scope inner_compile=config.patch(config_patches)(inner_compile), decompositions=decompositions, ) if config.cpp_wrapper: # CudaWrapperCodeGen relies on kernel name to find the autotuned cubin file with config.patch( { "cpp_wrapper": False, "triton.unique_kernel_names": True, "triton.autotune_cublasLt": False, } ): return compile_fx( model_, example_inputs_, inner_compile=inner_compile_with_cpp_wrapper(inner_compile), decompositions=decompositions, ) recursive_compile_fx = functools.partial( compile_fx, inner_compile=inner_compile, decompositions=decompositions, ) if not graph_returns_tuple(model_): return make_graph_return_tuple( model_, example_inputs_, recursive_compile_fx, ) if isinstance(model_, torch.fx.GraphModule): if isinstance(model_.graph._codegen, _PyTreeCodeGen): # this graph is the result of dynamo.export() return handle_dynamo_export_graph( model_, example_inputs_, recursive_compile_fx, ) # Since handle_dynamo_export_graph will trigger compile_fx again, # Move these passes after handle_dynamo_export_graph to avoid repeated calls. model_ = pre_grad_passes(model_, example_inputs_) if any(isinstance(x, (list, tuple, dict)) for x in example_inputs_): return flatten_graph_inputs( model_, example_inputs_, recursive_compile_fx, ) assert not config._raise_error_for_testing num_example_inputs = len(example_inputs_) cudagraphs = BoxedBool( config.triton.cudagraphs and not dynamo_config.dynamic_shapes ) forward_device = BoxedDeviceIndex(None) graph_id = next(_graph_counter) @dynamo_utils.dynamo_timed def fw_compiler_base(model: torch.fx.GraphModule, example_inputs, is_inference): if is_inference: # partition_fn won't be called joint_graph_passes(model) num_rng_seed_offset_inputs = 2 if functorch_config.functionalize_rng_ops else 0 fixed = len(example_inputs) - num_example_inputs - num_rng_seed_offset_inputs user_visible_outputs = set() if config.keep_output_stride: *_, model_outputs_node = model.graph.nodes assert model_outputs_node.op == "output" model_outputs, _ = pytree.tree_flatten(model_outputs_node.args) num_model_outputs = len(model_outputs) if isinstance(model_, torch.fx.GraphModule): *_, orig_model_outputs_node = model_.graph.nodes assert orig_model_outputs_node.op == "output" orig_model_outputs, _ = pytree.tree_flatten( orig_model_outputs_node.args ) num_orig_model_outputs = len(orig_model_outputs) original_output_start_index = model.meta.get( "original_output_start_index", 0 ) else: num_orig_model_outputs = num_model_outputs original_output_start_index = 0 assert num_orig_model_outputs <= num_model_outputs # We makes the following assumption # For inference # len(orig_model_outputs) == len(model_outputs) # For training # len(orig_model_outputs) <= len(model_outputs) # During training, most of the time the model_outputs starts with # orignal module's outputs followed by saved activations. # But this can be not true if the model have inplace updated tensors. # AOTAutograd will make those tensors being returned before the orignal # module's output. # To make things safe, we'll use original_output_start_index field # set by AOTAutograd to decide where the original module outputs start. user_visible_outputs = { n.name for n in model_outputs[ original_output_start_index : original_output_start_index + num_orig_model_outputs ] } return inner_compile( model, example_inputs, num_fixed=fixed, cudagraphs=cudagraphs, graph_id=graph_id, is_inference=is_inference, boxed_forward_device_index=forward_device, user_visible_outputs=user_visible_outputs, ) fw_compiler = functools.partial(fw_compiler_base, is_inference=False) inference_compiler = functools.partial(fw_compiler_base, is_inference=True) def partition_fn(graph, joint_inputs, **kwargs): joint_graph_passes(graph) return min_cut_rematerialization_partition( graph, joint_inputs, **kwargs, compiler="inductor" ) # Save and restore dynamic shapes setting for backwards, as it is # sometimes done as a context manager which won't be set when we # hit backwards compile dynamic_shapes = dynamo_config.dynamic_shapes @dynamo_utils.dynamo_timed def bw_compiler(model: torch.fx.GraphModule, example_inputs): with dynamo_config.patch(dynamic_shapes=dynamic_shapes): fixed = count_tangents(model) return inner_compile( model, example_inputs, num_fixed=fixed, cudagraphs=cudagraphs, is_backward=True, graph_id=graph_id, boxed_forward_device_index=forward_device, ) if decompositions is None: decompositions = select_decomp_table() # TODO: can add logging before/after the call to create_aot_dispatcher_function # in torch._functorch/aot_autograd.py::aot_module_simplified::aot_function_simplified::new_func # once torchdynamo is merged into pytorch with V.set_fake_mode(detect_fake_mode(example_inputs_)): return aot_autograd( fw_compiler=fw_compiler, bw_compiler=bw_compiler, inference_compiler=inference_compiler, decompositions=decompositions, partition_fn=partition_fn, keep_inference_input_mutations=True, )(model_, example_inputs_) def _shape_env_from_inputs(inputs): shape_env = None fake_mode = detect_fake_mode(inputs) # TODO(voz): It would be nice to enable this assert, but there are lots of tests that # pass in real inputs for now. # if len(inputs) > 0: # assert fake_mode is not None, breakpoint() if fake_mode is not None: return fake_mode.shape_env # When there are no tensor inputs, get shape_env from the first SymInt. for input in inputs: if isinstance(input, torch.SymInt): return input.node.shape_env # TODO(voz): Should we always have one anyway? return None def output_node(gm: torch.fx.GraphModule): """Get the output node from an FX graph""" last_node = next(iter(reversed(gm.graph.nodes))) assert last_node.op == "output" return last_node def graph_returns_tuple(gm: torch.fx.GraphModule): """True if a FX graph returns a tuple""" if not isinstance(gm, torch.fx.GraphModule): return True # can't check this, assume true (rv,) = output_node(gm).args if isinstance(rv, (list, tuple)): return True if ( isinstance(rv, torch.fx.node.Node) and hasattr(rv.target, "_schema") and len(rv.target._schema.returns) > 1 and all(str(ret.type) == "Tensor" for ret in rv.target._schema.returns) ): # for graphs whose result is one node with multiple outputs return True return False def make_graph_return_tuple(gm: torch.fx.GraphModule, inputs, compile_gm): """ Mutate gm so it returns a tuple. This is only needed for graphs not created by torchdynamo that return non-tuples. """ node = output_node(gm) (rv,) = node.args rv, spec = pytree.tree_flatten(rv) with gm.graph.inserting_before(node): gm.graph.output(rv) gm.graph.erase_node(node) assert graph_returns_tuple(gm) compiled_fn = compile_gm(gm, inputs) @functools.wraps(compiled_fn) def wrapper(*args, **kwargs): return pytree.tree_unflatten(compiled_fn(*args, **kwargs), spec) return wrapper def flatten_graph_inputs(gm: torch.fx.GraphModule, inputs, compile_gm): """ Mutate inputs so that they are flat and wrap gm such that it accepts those inputs. This is only needed for graphs not created by torchdynamo that take bumpy inputs. """ inputs, spec = pytree.tree_flatten(inputs) class GmWrapper(torch.nn.Module): def __init__(self): super().__init__() self.gm = gm def forward(self, *args): return self.gm(*pytree.tree_unflatten(args, spec)) compiled_fn = compile_gm(GmWrapper(), inputs) @functools.wraps(compiled_fn) def wrapper(*args): # note this doesn't check the spec, assuming it is the same return compiled_fn(*pytree.tree_flatten(args)[0]) return wrapper def handle_dynamo_export_graph(gm, inputs, compile_gm): """ `torch._dynamo.export` embeds pytrees in the FX graph codegen object, convert that to a normal FX graph so inductor can compile it. """ codegen = gm.graph._codegen gm.graph._codegen = torch.fx.graph.CodeGen() gm.recompile() compiled_fn = compile_gm(gm, codegen.process_inputs(*inputs)) @functools.wraps(compiled_fn) def wrapper(*args): return codegen.process_outputs(compiled_fn(*codegen.process_inputs(*args))) return wrapper