# mypy: allow-untyped-defs import functools import logging from typing import Any, Optional import sympy import torch from torch._dynamo.utils import counters from torch._inductor.autoheuristic.autoheuristic import AutoHeuristicSelectAlgorithm from torch._inductor.autoheuristic.autoheuristic_utils import ( AHContext, context_add_strides, context_add_using_tf32, mm_operations, ) from torch._inductor.codegen.cpp_gemm_template import CppGemmTemplate from torch._inductor.virtualized import V from torch.fx.experimental.proxy_tensor import make_fx from torch.torch_version import TorchVersion from .. import config as inductor_config, ir from ..codegen.cuda.gemm_template import CUTLASS2xGemmTemplate, CUTLASS3xGemmTemplate from ..codegen.rocm.ck_tile_universal_gemm_template import CKTileGemmTemplate from ..codegen.rocm.ck_universal_gemm_template import CKGemmTemplate from ..codegen.subgraph import SubgraphTemplate from ..ir import FlexibleLayout, is_triton from ..lowering import ( add_layout_constraint, constrain_to_fx_strides, lowerings as L, register_lowering, ) from ..select_algorithm import ( autotune_select_algorithm, ExternKernelChoice, realize_inputs, TritonTemplate, ) from ..utils import ( _use_cutlass_for_op, get_k_splits, get_tma_workspace_arg, use_aten_gemm_kernels, use_ck_gemm_template, use_ck_tile_gemm_template, use_cpp_gemm_template, use_cutlass_template, use_decompose_k_choice, use_triton_template, use_triton_tma_template, ) from .mm_common import ( _is_static_problem, addmm_epilogue, mm_args, mm_config_kwargs, mm_grid, mm_options, persistent_mm_grid, persistent_mm_options, scale_mm_epilogue, scaled_mm_options, ) try: import triton triton_version = TorchVersion(triton.__version__) has_triton = True except ImportError: triton_version = TorchVersion("0.0.0") has_triton = False log = logging.getLogger(__name__) aten = torch.ops.aten prims = torch.ops.prims mm_template = TritonTemplate( name="mm", grid=mm_grid, source=( r""" {{def_kernel("A", "B")}} M = {{size("A", 0)}} N = {{size("B", 1)}} K = {{size("A", 1)}} if M * N == 0: # early exit due to zero-size input(s) return stride_am = {{stride("A", 0)}} stride_ak = {{stride("A", 1)}} stride_bk = {{stride("B", 0)}} stride_bn = {{stride("B", 1)}} # based on triton.ops.matmul pid = tl.program_id(0) grid_m = (M + BLOCK_M - 1) // BLOCK_M grid_n = (N + BLOCK_N - 1) // BLOCK_N # re-order program ID for better L2 performance width = GROUP_M * grid_n group_id = pid // width group_size = min(grid_m - group_id * GROUP_M, GROUP_M) pid_m = group_id * GROUP_M + (pid % group_size) pid_n = (pid % width) // (group_size) tl.assume(pid_m >= 0) tl.assume(pid_n >= 0) rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) if ((stride_am == 1 and stride_ak == M) or (stride_am == K and stride_ak == 1)) and M >= BLOCK_M: offs_a_m = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M) else: offs_a_m = rm % M if ((stride_bk == 1 and stride_bn == K) or (stride_bk == N and stride_bn == 1)) and N >= BLOCK_N: offs_b_n = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N) else: offs_b_n = rn % N offs_k = tl.arange(0, BLOCK_K) acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE) for k_idx in range(0, tl.cdiv(K, BLOCK_K)): {% if not EVEN_K %} a_mask = offs_k[None, :] < (K - k_idx * BLOCK_K) b_mask = offs_k[:, None] < (K - k_idx * BLOCK_K) {% endif %} a_k_idx_vals = offs_k[None, :] + (k_idx * BLOCK_K) b_k_idx_vals = offs_k[:, None] + (k_idx * BLOCK_K) idx_m = offs_a_m[:, None] idx_n = a_k_idx_vals {{load_input("A", "a", ("idx_m", "idx_n"), mask=None if EVEN_K else "a_mask", indent_width=8)}} idx_m = b_k_idx_vals idx_n = offs_b_n[None, :] {{load_input("B", "b", ("idx_m", "idx_n"), mask=None if EVEN_K else "b_mask", indent_width=8)}} {% if USE_FAST_ACCUM %} acc = tl.dot(a, b, acc, allow_tf32=ALLOW_TF32, out_dtype=ACC_TYPE) {% else %} acc += tl.dot(a, b, allow_tf32=ALLOW_TF32, out_dtype=ACC_TYPE) {% endif %} # rematerialize rm and rn to save registers rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) idx_m = rm[:, None] idx_n = rn[None, :] mask = (idx_m < M) & (idx_n < N) # inductor generates a suffix {{store_output(("idx_m", "idx_n"), "acc", "mask")}} """ if (torch.version.hip is None) or triton_version >= "3.3.0" # FIXME: To get around rocm failures like https://github.com/pytorch/pytorch/actions/runs/13123783322/job/36617154943 # The only difference between the two templates is M >= BLOCK_M and N >= BLOCK_N checking. # See more details in https://github.com/pytorch/pytorch/pull/146293 else r""" {{def_kernel("A", "B")}} M = {{size("A", 0)}} N = {{size("B", 1)}} K = {{size("A", 1)}} if M * N == 0: # early exit due to zero-size input(s) return stride_am = {{stride("A", 0)}} stride_ak = {{stride("A", 1)}} stride_bk = {{stride("B", 0)}} stride_bn = {{stride("B", 1)}} # based on triton.ops.matmul pid = tl.program_id(0) grid_m = (M + BLOCK_M - 1) // BLOCK_M grid_n = (N + BLOCK_N - 1) // BLOCK_N # re-order program ID for better L2 performance width = GROUP_M * grid_n group_id = pid // width group_size = min(grid_m - group_id * GROUP_M, GROUP_M) pid_m = group_id * GROUP_M + (pid % group_size) pid_n = (pid % width) // (group_size) tl.assume(pid_m >= 0) tl.assume(pid_n >= 0) rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) if (stride_am == 1 and stride_ak == M) or (stride_am == K and stride_ak == 1): offs_a_m = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M) else: offs_a_m = rm % M if (stride_bk == 1 and stride_bn == K) or (stride_bk == N and stride_bn == 1): offs_b_n = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N) else: offs_b_n = rn % N offs_k = tl.arange(0, BLOCK_K) acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE) for k_idx in range(0, tl.cdiv(K, BLOCK_K)): {% if not EVEN_K %} a_mask = offs_k[None, :] < (K - k_idx * BLOCK_K) b_mask = offs_k[:, None] < (K - k_idx * BLOCK_K) {% endif %} a_k_idx_vals = offs_k[None, :] + (k_idx * BLOCK_K) b_k_idx_vals = offs_k[:, None] + (k_idx * BLOCK_K) idx_m = offs_a_m[:, None] idx_n = a_k_idx_vals {{load_input("A", "a", ("idx_m", "idx_n"), mask=None if EVEN_K else "a_mask", indent_width=8)}} idx_m = b_k_idx_vals idx_n = offs_b_n[None, :] {{load_input("B", "b", ("idx_m", "idx_n"), mask=None if EVEN_K else "b_mask", indent_width=8)}} {% if USE_FAST_ACCUM %} acc = tl.dot(a, b, acc, allow_tf32=ALLOW_TF32, out_dtype=ACC_TYPE) {% else %} acc += tl.dot(a, b, allow_tf32=ALLOW_TF32, out_dtype=ACC_TYPE) {% endif %} # rematerialize rm and rn to save registers rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) idx_m = rm[:, None] idx_n = rn[None, :] mask = (idx_m < M) & (idx_n < N) # inductor generates a suffix {{store_output(("idx_m", "idx_n"), "acc", "mask")}} """ ), cache_codegen_enabled_for_template=True, prologue_loads_all_inputs=True, ) persistent_tma_mm_template = TritonTemplate( name="mm_persistent_tma", grid=persistent_mm_grid, source=r""" {{def_kernel("A", "B")}} M = {{size("A", 0)}} N = {{size("B", 1)}} K = {{size("A", 1)}} if M * N == 0: # early exit due to zero-size input(s) return start_pid = tl.program_id(0) grid_m = tl.cdiv(M, BLOCK_M) grid_n = tl.cdiv(N, BLOCK_N) k_tiles = tl.cdiv(K, BLOCK_K) num_tiles = grid_m * grid_n tiles_per_SM = num_tiles // NUM_SMS if start_pid < num_tiles % NUM_SMS: tiles_per_SM += 1 tile_id = start_pid - NUM_SMS ki = -1 width = GROUP_M * grid_n rk_for_mask = tl.arange(0, BLOCK_K) acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE) workspace_base = ws_ptr + start_pid * 2 * TMA_SIZE a_desc_ptr = workspace_base b_desc_ptr = workspace_base + TMA_SIZE {%- if TMA_EXPERIMENTAL_API %} triton.language.extra.cuda.experimental_device_tensormap_create2d( desc_ptr=a_desc_ptr, global_address=A, load_size=[BLOCK_M, BLOCK_K] if A_ROW_MAJOR else [BLOCK_K, BLOCK_M], global_size=[M, K] if A_ROW_MAJOR else [K, M], element_ty=A.dtype.element_ty, ) triton.language.extra.cuda.experimental_device_tensormap_create2d( desc_ptr=b_desc_ptr, global_address=B, load_size=[BLOCK_K, BLOCK_N] if B_ROW_MAJOR else [BLOCK_N, BLOCK_K], global_size=[K, N] if B_ROW_MAJOR else [N, K], element_ty=B.dtype.element_ty, ) tl.extra.cuda.experimental_tensormap_fenceproxy_acquire(a_desc_ptr) tl.extra.cuda.experimental_tensormap_fenceproxy_acquire(b_desc_ptr) a_desc = a_desc_ptr b_desc = b_desc_ptr {%- else %} a_desc = triton.language.make_tensor_descriptor( base=A, shape=[M, K] if A_ROW_MAJOR else [K, M], strides=[K, 1] if A_ROW_MAJOR else [M, 1], block_shape=[BLOCK_M, BLOCK_K] if A_ROW_MAJOR else [BLOCK_K, BLOCK_M], ) b_desc = triton.language.make_tensor_descriptor( base=B, shape=[K, N] if B_ROW_MAJOR else [N, K], strides=[N, 1] if B_ROW_MAJOR else [K, 1], block_shape=[BLOCK_K, BLOCK_N] if B_ROW_MAJOR else [BLOCK_N, BLOCK_K], ) {%- endif %} pid_m = 0 pid_n = 0 rm = 0 rn = 0 for _ in range(0, k_tiles * tiles_per_SM): ki = tl.where(ki == k_tiles - 1, 0, ki + 1) if ki == 0: tile_id += NUM_SMS # re-order program ID for better L2 performance group_id = tile_id // width group_size = min(grid_m - group_id * GROUP_M, GROUP_M) pid_m = group_id * GROUP_M + (tile_id % group_size) pid_n = (tile_id % width) // (group_size) rm = pid_m * BLOCK_M rn = pid_n * BLOCK_N rk = ki * BLOCK_K {%- if TMA_EXPERIMENTAL_API %} a = tl._experimental_descriptor_load( a_desc, [rm, rk] if A_ROW_MAJOR else [rk, rm], [BLOCK_M, BLOCK_K] if A_ROW_MAJOR else [BLOCK_K, BLOCK_M], A.dtype.element_ty, ) b = tl._experimental_descriptor_load( b_desc, [rk, rn] if B_ROW_MAJOR else [rn, rk], [BLOCK_K, BLOCK_N] if B_ROW_MAJOR else [BLOCK_N, BLOCK_K], B.dtype.element_ty, ) {%- else %} a = tl.load_tensor_descriptor( a_desc, [rm, rk] if A_ROW_MAJOR else [rk, rm], ) b = tl.load_tensor_descriptor( b_desc, [rk, rn] if B_ROW_MAJOR else [rn, rk], ) {%- endif %} acc += tl.dot( a if A_ROW_MAJOR else a.T, b if B_ROW_MAJOR else b.T, allow_tf32=ALLOW_TF32, ) if ki == k_tiles - 1: # rematerialize rm and rn to save registers rcm = rm + tl.arange(0, BLOCK_M) rcn = rn + tl.arange(0, BLOCK_N) idx_m = rcm[:, None] idx_n = rcn[None, :] mask = (idx_m < M) & (idx_n < N) # inductor generates a suffix {{store_output(("idx_m", "idx_n"), "acc", "mask", indent_width=12)}} acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE) """, ) load_scales = r""" @triton.jit def load_scales(a_scale_ptr, b_scale_ptr, SCALING_ROWWISE: tl.constexpr): if SCALING_ROWWISE: # For row-wise scaling, we'll return the pointers return a_scale_ptr, b_scale_ptr else: # For per-tensor scaling, we'll load the scalar values a_scale = tl.load(a_scale_ptr) b_scale = tl.load(b_scale_ptr) return a_scale, b_scale """ apply_scaling = r""" @triton.jit def apply_scaling( accumulator, a_scale, b_scale, SCALING_ROWWISE: tl.constexpr, offs_cm, offs_cn, M, N, stride_a_scale_m, stride_b_scale_n, ): if SCALING_ROWWISE: # For row-wise scaling, we need to load the scales for each row/column a_scales = tl.load( a_scale + (offs_cm * stride_a_scale_m), mask=offs_cm < M, other=0.0, ) b_scales = tl.load( b_scale + (offs_cn * stride_b_scale_n), mask=offs_cn < N, other=0.0, ) acc_scale = a_scales[:, None] * b_scales[None, :] else: # For per-tensor scaling, we can directly use the loaded scalar values acc_scale = a_scale * b_scale return accumulator * acc_scale """ device_tma = r""" {{def_kernel("A", "B", "A_inverse_scale", "B_inverse_scale")}} M = {{size("A", 0)}} N = {{size("B", 1)}} K = {{size("A", 1)}} if M * N == 0: # early exit due to zero-size input(s) return stride_am = {{stride("A", 0)}} stride_ak = {{stride("A", 1)}} stride_bk = {{stride("B", 0)}} stride_bn = {{stride("B", 1)}} if SCALING_ROWWISE: stride_a_scale_m = 1 stride_b_scale_n = 1 else: stride_a_scale_m = 0 stride_b_scale_n = 0 start_pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_M) num_pid_n = tl.cdiv(N, BLOCK_N) k_tiles = tl.cdiv(K, BLOCK_K) num_tiles = num_pid_m * num_pid_n workspace_base = ws_ptr + start_pid * 2 * TMA_SIZE a_desc_ptr = workspace_base b_desc_ptr = workspace_base + TMA_SIZE {%- if TMA_EXPERIMENTAL_API %} triton.language.extra.cuda.experimental_device_tensormap_create2d( desc_ptr=a_desc_ptr, global_address=A, load_size=[BLOCK_M, BLOCK_K], global_size=[M, K], element_ty=A.dtype.element_ty, ) triton.language.extra.cuda.experimental_device_tensormap_create2d( desc_ptr=b_desc_ptr, global_address=B, load_size=[BLOCK_N, BLOCK_K], global_size=[N, K], element_ty=B.dtype.element_ty, ) tl.extra.cuda.experimental_tensormap_fenceproxy_acquire(a_desc_ptr) tl.extra.cuda.experimental_tensormap_fenceproxy_acquire(b_desc_ptr) a_desc = a_desc_ptr b_desc = a_desc_ptr {%- else %} a_desc = triton.language.make_tensor_descriptor( base=A, shape=[M, K], strides=[K, 1], block_shape=[BLOCK_M, BLOCK_K], ) b_desc = triton.language.make_tensor_descriptor( base=B, shape=[N, K], strides=[K, 1], block_shape=[BLOCK_N, BLOCK_K], ) {%- endif %} tiles_per_SM = num_tiles // NUM_SMS if start_pid < num_tiles % NUM_SMS: tiles_per_SM += 1 tile_id = start_pid - NUM_SMS ki = -1 pid_m = 0 pid_n = 0 offs_am = 0 offs_bn = 0 num_pid_in_group = GROUP_M * num_pid_n accumulator = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE) a_scale, b_scale = load_scales(A_inverse_scale, B_inverse_scale, SCALING_ROWWISE) for _ in range(0, k_tiles * tiles_per_SM): ki = tl.where(ki == k_tiles - 1, 0, ki + 1) if ki == 0: tile_id += NUM_SMS group_id = tile_id // num_pid_in_group first_pid_m = group_id * GROUP_M group_size_m = min(num_pid_m - first_pid_m, GROUP_M) pid_m = first_pid_m + (tile_id % group_size_m) pid_n = (tile_id % num_pid_in_group) // group_size_m offs_am = pid_m * BLOCK_M offs_bn = pid_n * BLOCK_N offs_k = ki * BLOCK_K {%- if TMA_EXPERIMENTAL_API %} a = tl._experimental_descriptor_load( a_desc_ptr, [offs_am, offs_k], [BLOCK_M, BLOCK_K], A.dtype.element_ty ) b = tl._experimental_descriptor_load( b_desc_ptr, [offs_bn, offs_k], [BLOCK_N, BLOCK_K], B.dtype.element_ty ) {%- else %} a = tl.load_tensor_descriptor(a_desc, [offs_am, offs_k]) b = tl.load_tensor_descriptor(b_desc, [offs_bn, offs_k]) {%- endif %} if USE_FAST_ACCUM: accumulator = tl.dot(a, b.T, accumulator) else: accumulator += tl.dot(a, b.T) if ki == k_tiles - 1: # Apply inverse scaling offs_cm = offs_am + tl.arange(0, BLOCK_M) offs_cn = offs_bn + tl.arange(0, BLOCK_N) # Apply scaling accumulator = apply_scaling( accumulator, a_scale, b_scale, SCALING_ROWWISE, offs_cm, offs_cn, M, N, stride_a_scale_m, stride_b_scale_n, ) idx_m = offs_cm[:, None] idx_n = offs_cn[None, :] mask = (idx_m < M) & (idx_n < N) # inductor generates a suffix {{store_output(("idx_m", "idx_n"), "accumulator", "mask", indent_width=12)}} accumulator = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32) """ scaled_mm_device_tma_template = TritonTemplate( name="scaled_mm_device_tma", grid=persistent_mm_grid, source=device_tma + load_scales + apply_scaling, ) # prevent duplication registration of extern functions @functools.cache def lazy_register_extern_choice(fn): return ExternKernelChoice(fn) aten_mm = ExternKernelChoice(torch.mm, "at::mm_out") aten_addmm = ExternKernelChoice( torch.addmm, "at::addmm_out", op_overload=aten.addmm.default ) aten__int_mm = ExternKernelChoice(torch._int_mm, "at::_int_mm_out") aten__sparse_semi_structured_mm = ExternKernelChoice( torch._sparse_semi_structured_mm, "at::_sparse_semi_structured_mm", has_out_variant=False, ) aten__fp8_mm = ExternKernelChoice( torch._scaled_mm, "at::_scaled_mm_out", op_overload=aten._scaled_mm.out ) def _is_int8_mat(mat): return mat.get_dtype() in (torch.int8, torch.uint8) def _is_large_block_for_cpu(m, n, k): # Thresholds are experimentally determined to reduce Triton CPU compile times return m * n > 2**13 @functools.lru_cache def using_b200() -> bool: """Returns true if the device is a NVIDIA B200, otherwise returns false.""" if not torch.cuda.is_available(): return False # compute capability 10.0 or 10.0a is NVIDIA B200 device_properties = torch.cuda.get_device_properties(torch.cuda.current_device()) return device_properties.major == 10 def bias_addmm(inp, mat1, mat2, *, out=None, alpha=1, beta=1): """ Giving torch.addmm a 1D tensor calls a different (faster) cublasLt kernel under the hood. There are a few shapes where this is slower, but they are rare. """ if inp.stride(0) == 0 or inp.size(0) == 1: return torch.addmm(inp[0], mat1, mat2, out=out, alpha=alpha, beta=beta) return torch.addmm(inp, mat1, mat2, out=out, alpha=alpha, beta=beta) def check_supported_striding(mat_a, mat_b) -> None: def is_row_major(stride) -> bool: return V.graph.sizevars.statically_known_equals(stride[1], 1) def is_col_major(stride) -> bool: return V.graph.sizevars.statically_known_equals(stride[0], 1) def has_zero_dim(size) -> bool: return bool( V.graph.sizevars.statically_known_equals(size[0], 0) or V.graph.sizevars.statically_known_equals(size[1], 0) ) # Check mat_a (self) stride requirements torch._check( is_row_major(mat_a.get_stride()) or has_zero_dim(mat_a.get_size()), lambda: f"mat_a must be row_major, got stride {mat_a.get_stride()}", ) # Check mat_b stride requirements torch._check( is_col_major(mat_b.get_stride()) or has_zero_dim(mat_b.get_size()), lambda: f"mat_b must be col_major, got stride {mat_b.get_stride()}", ) aten_bias_addmm = ExternKernelChoice(bias_addmm, None) def decomposeK(a, b, k_splits): m = a.shape[0] n = b.shape[1] k = a.shape[1] k_parts = k // k_splits B = k_splits a_reshaped = torch.permute(a.reshape(m, B, k_parts), (1, 0, 2)) b_reshaped = b.reshape(B, k_parts, n) result = torch.bmm(a_reshaped, b_reshaped, out_dtype=torch.float32) reduced_buf = torch.sum(result, 0) return reduced_buf.to(a.dtype) @register_lowering(aten.mm, type_promotion_kind=None) def tuned_mm(mat1, mat2, *, layout=None): """ Lowering for autotuning aten.mm with different backends (Aten, Triton, CUTLASS, etc.) """ m, n, k, layout, mat1, mat2 = mm_args(mat1, mat2, layout=layout) device_type = ir.get_device_type(mat1) name = "mm" # below is for getting an overview logging info of inductor mms counters["aten_mm_info"][f"aten.mm_{m}_{n}_{k}"] += 1 log.info( "Tuned aten.mm: m=%s, n=%s, k=%s, mat1_dtype=%s, mat2_dtype=%s, output_layout=%s", m, n, k, mat1.get_dtype(), mat2.get_dtype(), layout, ) aten_layout = layout if not (inductor_config.max_autotune or inductor_config.max_autotune_gemm): aten_layout = FlexibleLayout( device=layout.device, dtype=layout.dtype, size=layout.size ) # options to tune from choices = ( [aten_mm.bind((mat1, mat2), aten_layout)] if use_aten_gemm_kernels() else [] ) static_shape, is_nonzero = _is_static_problem(layout) mm_configs = V.choices.get_base_mm_configs(device_type) persistent_mm_configs = V.choices.get_persistent_mm_configs(device_type) extra_mm_configs = V.choices.get_extra_mm_configs(device_type) dtype = mat1.get_dtype() if is_nonzero and use_triton_template(layout): for config in mm_configs( m, n, k, **mm_config_kwargs(device_type, _is_large_block_for_cpu, dtype.itemsize), ): mm_template.maybe_append_choice( choices, input_nodes=(mat1, mat2), layout=layout, **mm_options(config, m, n, k, layout), ) if use_triton_tma_template(mat1, mat2): for config in persistent_mm_configs( m, n, k, **mm_config_kwargs( device_type, _is_large_block_for_cpu, dtype.itemsize ), ): persistent_tma_mm_template.maybe_append_choice( choices, input_nodes=(mat1, mat2), layout=layout, workspace_arg=get_tma_workspace_arg( num_tma_descriptors=2, device=mat1.get_device(), ), **mm_options(config, m, n, k, layout), **persistent_mm_options(mat1, mat2), ) from torch._inductor.ir import get_free_symbols # Only do split-k optimization if K is much larger than m, n and m, n are small # and if there aren't any unbacked symbols unbacked_symbols = any( len(get_free_symbols(itr, unbacked_only=True)) > 0 for itr in ( mat1.get_size(), mat1.get_stride(), mat2.get_size(), mat2.get_stride(), ) ) if use_decompose_k_choice(m, n, k) and not unbacked_symbols: from torch._dispatch.python import enable_python_dispatcher from ..decomposition import select_decomp_table k_splits = get_k_splits(m, n, k) for k_split in k_splits: if not V.graph.sizevars.statically_known_true( sympy.Eq(sympy.Mod(k, k_split), 0) ): continue with enable_python_dispatcher(): decompositions = select_decomp_table() decompose_k_subgraph_template = SubgraphTemplate( name=f"decompose_k_mm_{k_split}_split", make_fx_graph=make_fx( functools.partial(decomposeK, k_splits=k_split), decompositions, ), ) decompose_k_subgraph_template.maybe_append_choice( choices, input_nodes=(mat1, mat2), layout=layout, ) if ( is_nonzero and use_cutlass_template(layout, m, n, k) and _use_cutlass_for_op("mm") ): CUTLASS3xGemmTemplate.add_cutlass_gemm_choices(choices, layout, [mat1, mat2]) if is_nonzero and use_ck_gemm_template(layout, m, n, k): CKGemmTemplate.add_ck_gemm_choices(choices, layout, [mat1, mat2]) if is_nonzero and use_ck_tile_gemm_template(layout, m, n, k): CKTileGemmTemplate.add_choices(choices, layout, [mat1, mat2]) if use_cpp_gemm_template(layout, mat1, mat2): CppGemmTemplate.add_choices( choices, layout, [mat1, mat2], ) input_nodes = [mat1, mat2] if ( is_nonzero and use_triton_template(layout) and torch._inductor.config.run_autoheuristic(name) and is_triton(mat1) ): always_included = [] if use_aten_gemm_kernels(): always_included.append("extern_mm") num_choices_before_extra_configs = len(choices) for config in extra_mm_configs( m, n, k, **mm_config_kwargs(device_type, _is_large_block_for_cpu) ): mm_template.maybe_append_choice( choices, input_nodes=(mat1, mat2), layout=layout, **mm_options(config, m, n, k, layout), ) # using AutoHeuristic for ranking ah_choices = mm_autoheuristic( mat1, mat2, m, n, k, choices, name, input_nodes, mm_operations(), None, top_k=10, always_included=always_included, ) if not torch._inductor.config.collect_autoheuristic(name): # if we are collecting data, we do not want to modify choices if ah_choices is not None and len(ah_choices) > 0: # the order in which autoheuristic returns choices is not the same as # as the order of choices, which affects things like epilogue fusion. # once epilogue fusion benchmarks choices in sorted order, I think we can # just use the order returned by autoheuristic choices = [choice for choice in choices if choice in ah_choices] else: choices = choices[:num_choices_before_extra_configs] for k in inductor_config.external_matmul: choices.append(lazy_register_extern_choice(k).bind((mat1, mat2), layout)) return autotune_select_algorithm(name, choices, [mat1, mat2], layout) @register_lowering(aten._int_mm, type_promotion_kind=None) def tuned_int_mm(mat1, mat2, *, layout=None): m, n, k, layout, mat1, mat2 = mm_args( mat1, mat2, layout=layout, out_dtype=torch.int32 ) # below is for getting an overview logging info of inductor mms counters["aten_mm_info"][f"aten._int_mm_{m}_{n}_{k}"] += 1 log.info( "Tuned aten._int_mm: m=%s, n=%s, k=%s, mat1_dtype=%s, mat2_dtype=%s, output_layout=%s", m, n, k, mat1.get_dtype(), mat2.get_dtype(), layout, ) device_type = ir.get_device_type(mat1) static_shape, is_nonzero = _is_static_problem(layout) use_cutlass = static_shape and is_nonzero and use_cutlass_template(layout, m, n, k) choices = ( [aten__int_mm.bind((mat1, mat2), layout)] if use_aten_gemm_kernels() else [] ) if use_cutlass and _use_cutlass_for_op("int_mm"): CUTLASS3xGemmTemplate.add_cutlass_gemm_choices( choices, layout, [mat1, mat2], fuseable=True, non_fuseable=True ) int8_mm_configs = V.choices.get_int8_mm_configs(device_type) if is_nonzero and use_triton_template(layout, enable_int32=True): for config in int8_mm_configs( m, n, k, **mm_config_kwargs(device_type, _is_large_block_for_cpu) ): mm_template.maybe_append_choice( choices, input_nodes=(mat1, mat2), layout=layout, **mm_options(config, m, n, k, layout), ) return autotune_select_algorithm("int_mm", choices, [mat1, mat2], layout) @register_lowering(aten.addmm, type_promotion_kind=None) def tuned_addmm(inp, mat1, mat2, *, alpha=1, beta=1, layout=None): device_type = ir.get_device_type(mat1) m, n, k, layout, mat1, mat2, inp_expanded = mm_args(mat1, mat2, inp, layout=layout) static_shape, is_nonzero = _is_static_problem(layout) # below is for getting an overview logging info of inductor mms counters["aten_mm_info"][f"aten.addmm_{m}_{n}_{k}"] += 1 log.info( "Tuned aten.addmm: m=%s, n=%s, k=%s, mat1_dtype=%s, mat2_dtype=%s, output_layout=%s", m, n, k, mat1.get_dtype(), mat2.get_dtype(), layout, ) if (not is_nonzero) or ( not (inductor_config.max_autotune or inductor_config.max_autotune_gemm) ): # Use a FlexibleLayout if we are not autotuning. # This allows padding strides for the output. from torch._inductor.ir import FixedLayout, FlexibleLayout if isinstance(layout, FixedLayout): layout = FlexibleLayout( device=layout.device, dtype=layout.dtype, size=layout.size ) choices = ( [ aten_addmm.bind( (inp, mat1, mat2), layout, alpha=alpha, beta=beta, ) ] if use_aten_gemm_kernels() else [] ) return autotune_select_algorithm("addmm", choices, [inp, mat1, mat2], layout) choices = ( [ aten_addmm.bind( (inp_expanded, mat1, mat2), layout, alpha=alpha, beta=beta, ) ] if use_aten_gemm_kernels() else [] ) if ( use_aten_gemm_kernels() and inp_expanded.get_stride()[0] == 0 and inp_expanded.get_device().type == "cuda" and inductor_config.triton.autotune_cublasLt ): # unexpand inp to make sure fused addmm from cublasLt is used choices.insert( 0, aten_bias_addmm.bind( (inp_expanded, mat1, mat2), layout, alpha=alpha, beta=beta ), ) mm_configs = V.choices.get_base_mm_configs(device_type) persistent_mm_configs = V.choices.get_persistent_mm_configs(device_type) dtype = mat1.get_dtype() if is_nonzero and use_triton_template(layout): for config in mm_configs( m, n, k, **mm_config_kwargs(device_type, _is_large_block_for_cpu, dtype.itemsize), ): mm_template.maybe_append_choice( choices, input_nodes=(inp_expanded, mat1, mat2), layout=layout, **mm_options(config, m, n, k, layout), prefix_args=1, epilogue_fn=addmm_epilogue(layout.dtype, alpha, beta), epilogue_fn_hash=str(["addmm_epilogue", layout.dtype, alpha, beta]), ) if use_triton_tma_template(mat1, mat2): for config in persistent_mm_configs( m, n, k, **mm_config_kwargs( device_type, _is_large_block_for_cpu, dtype.itemsize ), ): persistent_tma_mm_template.maybe_append_choice( choices, input_nodes=(inp_expanded, mat1, mat2), layout=layout, workspace_arg=get_tma_workspace_arg( num_tma_descriptors=2, device=mat1.get_device(), ), **mm_options(config, m, n, k, layout), **persistent_mm_options(mat1, mat2), prefix_args=1, epilogue_fn=addmm_epilogue(layout.dtype, alpha, beta), ) if ( is_nonzero and use_cutlass_template(layout, m, n, k) and _use_cutlass_for_op("addmm") ): CUTLASS3xGemmTemplate.add_cutlass_gemm_choices( choices, layout, [mat1, mat2, inp_expanded], alpha=alpha, beta=beta, input_reorder=[2, 0, 1], ) if is_nonzero and use_ck_gemm_template(layout, m, n, k): CKGemmTemplate.add_ck_gemm_choices( choices, layout, [mat1, mat2, inp_expanded], alpha=alpha, beta=beta, input_reorder=[2, 0, 1], ) if use_cpp_gemm_template(layout, mat1, mat2): CppGemmTemplate.add_choices( choices, layout, [inp_expanded, mat1, mat2], alpha=alpha, beta=beta, has_bias=True, ) return autotune_select_algorithm( "addmm", choices, [inp_expanded, mat1, mat2], layout ) @register_lowering(aten._sparse_semi_structured_mm, type_promotion_kind=None) def tuned_sparse_semi_structured_mm( mat1, mat1_meta, mat2, *, out_dtype=None, layout=None ): from torch._inductor.select_algorithm import realize_inputs mat1, mat1_meta, mat2 = realize_inputs(mat1, mat1_meta, mat2) m1, k1 = mat1.get_size() m2, _ = mat1_meta.get_size() k2, n = mat2.get_size() m = V.graph.sizevars.check_equals_and_simplify(m1, m2) k = V.graph.sizevars.check_equals_and_simplify(2 * k1, k2) if layout is None: from torch._inductor.ir import FixedLayout layout = FixedLayout( mat2.get_device(), out_dtype if out_dtype else mat2.get_dtype(), [m, n], [n, 1], ) else: assert out_dtype is None, "out_dtype is ignored if layout is specified." choices = ( [ aten__sparse_semi_structured_mm.bind( (mat1, mat1_meta, mat2), layout, out_dtype=out_dtype ) ] if use_aten_gemm_kernels() else [] ) if ( m * n != 0 and use_cutlass_template(layout, m, n, k) and _use_cutlass_for_op("sparse_semi_structured_mm") ): CUTLASS2xGemmTemplate.add_cutlass_gemm_choices( choices, layout, [mat1, mat2, mat1_meta], fuseable=True, non_fuseable=True ) return autotune_select_algorithm( "sparse_semi_structured_mm", choices, [mat1, mat1_meta, mat2], layout ) add_layout_constraint(aten._scaled_mm.default, constrain_to_fx_strides) @register_lowering(aten._scaled_mm.default, type_promotion_kind=None) # type: ignore[misc] def tuned_scaled_mm( mat_a, mat_b, scale_a, scale_b, bias=None, scale_result=None, out_dtype=None, use_fast_accum=False, layout=None, ): """ Performs an optimized matrix multiplication where scaling factors are applied to the inputs and/or output. Args: mat1 (Tensor): First input matrix mat2 (Tensor): Second input matrix scale1 (Tensor): Scale factor applied to mat1 (supports broadcasting) scale2 (Tensor): Scale factor applied to mat2 (supports broadcasting) bias (Tensor, optional): Optional bias tensor to add to the result layout: Layout hint for optimization Returns: Tensor: The result of the scaled matrix multiplication """ m, n, k, layout, mat_a, mat_b = mm_args( mat_a, mat_b, layout=layout, out_dtype=out_dtype ) # below is for getting an overview logging info of inductor mms counters["aten_mm_info"][f"aten._scaled_mm.default_{m}_{n}_{k}"] += 1 log.info( "Tuned aten._scaled_mm.default: m=%s, n=%s, k=%s, mat1_dtype=%s, mat2_dtype=%s, output_layout=%s", m, n, k, mat_a.get_dtype(), mat_b.get_dtype(), layout, ) device_type = ir.get_device_type(mat_a) check_supported_striding(mat_a, mat_b) scale_a_real, scale_b_real = realize_inputs(scale_a, scale_b) input_nodes: tuple[Any, ...] if not bias: input_nodes = (mat_a, mat_b, scale_a_real, scale_b_real) else: bias_real = realize_inputs(bias) input_nodes = (mat_a, mat_b, scale_a_real, scale_b_real, bias_real) aten_choice = aten__fp8_mm.bind( input_nodes, layout, out_dtype=out_dtype, use_fast_accum=use_fast_accum ) choices = [] if use_aten_gemm_kernels(): choices.append(aten_choice) # We dont have triton lowerings for the MX variants yet if scale_a.dtype != torch.float32: return autotune_select_algorithm("scaled_mm", choices, input_nodes, layout) _, is_nonzero = _is_static_problem(layout) scaled_mm_configs = V.choices.get_scaled_mm_configs(device_type) scaled_persistent_mm_configs = V.choices.get_scaled_persistent_mm_configs( device_type ) if is_nonzero and use_triton_template(layout, enable_float8=True): triton_input_nodes: tuple[Any, ...] if bias and len(mat_b.get_size()) == len(bias.get_size()) + 1: # Need to unsqueeze bias from [N] -> [1, N] triton_bias = L[aten.unsqueeze](bias, 0) else: triton_bias = bias if len(scale_a.get_size()) == 0 or len(scale_b.get_size()) == 0: assert len(scale_a.get_size()) == len(scale_b.get_size()) # Need to unsqueeze scale from [] -> [1, 1] triton_scale_a = L[aten.unsqueeze](L[aten.unsqueeze](scale_a, 0), 1) triton_scale_b = L[aten.unsqueeze](L[aten.unsqueeze](scale_b, 0), 1) else: triton_scale_a = scale_a triton_scale_b = scale_b if bias: triton_input_nodes = ( mat_a, mat_b, triton_scale_a, triton_scale_b, triton_bias, ) suffix_args = 3 else: triton_input_nodes = (mat_a, mat_b, triton_scale_a, triton_scale_b) suffix_args = 2 # TODO (paulzhan): There is no template that exists for bias and TMA # Don't run tma template currently if bias exists if use_triton_tma_template(mat_a, mat_b) and not bias: for config in scaled_persistent_mm_configs(m, n, k): kwargs = scaled_mm_options( config, m, n, k, layout, scale_a, scale_b, use_fast_accum, device_tma=True, ) scaled_mm_device_tma_template.maybe_append_choice( choices, input_nodes=triton_input_nodes, layout=layout, workspace_arg=get_tma_workspace_arg( num_tma_descriptors=2, device=mat_a.get_device(), ), **kwargs, ) for config in scaled_mm_configs(m, n, k): if V.graph.sizevars.guard_or_false(sympy.Le(k, 16)): # Triton crashes however uncommon for real workloads continue # On NVIDIA B200 GPUs, K dim must be >= 32 for tcgen05.mma.kind::f8f6f4.* PTX instruction to be valid # source: https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-matrix-shape if using_b200() and V.graph.sizevars.guard_or_false(sympy.Lt(k, 32)): continue kwargs = scaled_mm_options( config, m, n, k, layout, scale_a, scale_b, use_fast_accum ) # possibly appends a TritonTemplateCaller to choices mm_template.maybe_append_choice( choices, input_nodes=triton_input_nodes, layout=layout, **kwargs, suffix_args=suffix_args, epilogue_fn=scale_mm_epilogue(), epilogue_fn_hash="scale_mm_epilogue", ) if ( is_nonzero and use_cutlass_template(layout, m, n, k) and _use_cutlass_for_op("scaled_mm") ): CUTLASS3xGemmTemplate.add_cutlass_gemm_choices( choices, layout, input_nodes, # type: ignore[arg-type] use_fast_accum=use_fast_accum, # type: ignore[arg-type] ) if is_nonzero and use_ck_gemm_template(layout, m, n, k): CKGemmTemplate.add_ck_gemm_choices(choices, layout, input_nodes) return autotune_select_algorithm("scaled_mm", choices, input_nodes, layout) @functools.cache def _is_sm7x_or_older_gpu(index: Optional[int]) -> bool: props = torch.cuda.get_device_properties(index or 0) return props.major <= 7 def dims_are_int(dims): return all(isinstance(dim, int) for dim in dims) def mm_autoheuristic( mat1, mat2, m, n, k, choices, name, input_nodes, ops, precondition, top_k: Optional[int] = None, always_included=None, ): m, n, k = get_size_hints(mat1, mat2, m, n, k) if not dims_are_int([m, n, k]): return None mat1_stride, mat2_stride = get_size_hints_strides(mat1, mat2) def get_context(m, k, n, mat1, mat2, mat1_stride, mat2_stride): context = AHContext() context.add_feature("m", m) context.add_feature("k", k) context.add_feature("n", n) context.add_feature("mat1_dtype", mat1.layout.dtype, is_categorical=True) context.add_feature("mat2_dtype", mat2.layout.dtype, is_categorical=True) context_add_strides(context, "mat1", mat1_stride) context_add_strides(context, "mat2", mat2_stride) context.add_feature( "mat1_iscontig", mat1.layout.is_contiguous(), is_categorical=True ) context.add_feature( "mat2_iscontig", mat2.layout.is_contiguous(), is_categorical=True ) if name == "mm": context_add_using_tf32(context, mat1.layout.dtype) return context def fallback(): return None context = get_context(m, k, n, mat1, mat2, mat1_stride, mat2_stride) autoheuristic = AutoHeuristicSelectAlgorithm( fallback=fallback, choices=choices, input_nodes=input_nodes, context=context, name=name, augment_context=ops, precondition=precondition, ) if top_k is not None: # TODO: is there a cleaner way to ensure aten.mm is always included? return autoheuristic.get_top_k_choices_caller( top_k, always_included=always_included ) return autoheuristic.get_choice_caller() def get_size_hints(mat1, mat2, m, n, k): if not isinstance(m, int) or not isinstance(k, int): (m, k) = V.graph.sizevars.size_hints( mat1.get_size(), fallback=torch._inductor.config.unbacked_symint_fallback, ) if not isinstance(n, int) or not isinstance(k, int): (k, n) = V.graph.sizevars.size_hints( mat2.get_size(), fallback=torch._inductor.config.unbacked_symint_fallback, ) return m, n, k def get_size_hints_strides(mat1, mat2): mat1_stride = mat1.layout.stride mat2_stride = mat2.layout.stride strides = [mat1_stride, mat2_stride] strides_hints = [] for stride in strides: if not isinstance(stride, int): stride = V.graph.sizevars.size_hints( stride, fallback=torch._inductor.config.unbacked_symint_fallback, ) strides_hints.append(stride) return strides_hints[0], strides_hints[1]