# Owner(s): ["module: dynamo"] import collections import copy import dataclasses import dis import enum import logging import math import os import sys import typing import unittest import weakref from unittest.mock import patch import numpy as np import torch import torch._dynamo.test_case import torch._dynamo.testing import torch.onnx.operators from torch._dynamo import bytecode_transformation, graph_break from torch._dynamo.testing import ( CompileCounter, requires_static_shapes, same, unsupported, ) from torch.testing._internal.jit_utils import JitTestCase mytuple = collections.namedtuple("mytuple", ["a", "b", "ab"]) def my_custom_function(x): return x + 1 class MiscTests(torch._dynamo.test_case.TestCase): def test_boolarg(self): def boolarg(aa, bb, flag): if flag: return aa - bb else: return bb - aa a = torch.randn(10, 10) b = torch.randn(10, 10) correct1 = boolarg(a, b, True) correct2 = boolarg(a, b, False) correct3 = boolarg(a, b, None) counter = CompileCounter() opt_boolarg = torch._dynamo.optimize_assert(counter)(boolarg) val1 = opt_boolarg(a, b, True) val2 = opt_boolarg(a, b, False) val3 = opt_boolarg(a, b, None) val4 = opt_boolarg(a, b, True) self.assertTrue(same(val1, correct1)) self.assertTrue(same(val2, correct2)) self.assertTrue(same(val3, correct3)) self.assertTrue(same(val4, correct1)) self.assertEqual(counter.frame_count, 3) def test_callpacked(self): def call_packed(args): a, b, c = args return a - b * c counter = CompileCounter() a = torch.randn(10, 10) b = torch.randn(10, 10) c = torch.randn(10, 10) correct = call_packed([a, b, c]) opt_call_packed = torch._dynamo.optimize_assert(counter)(call_packed) val1 = opt_call_packed([a, b, c]) val2 = opt_call_packed((a, b, c)) val3 = opt_call_packed([a, b, c]) val4 = opt_call_packed((a, b, c)) self.assertTrue(same(val1, correct)) self.assertTrue(same(val2, correct)) self.assertTrue(same(val3, correct)) self.assertTrue(same(val4, correct)) self.assertEqual(counter.frame_count, 2) def test_raises(self): def fn(a, b, c, cls): x = a + b - c * 10 raise cls(str(x)) counter = CompileCounter() a = torch.randn(10, 10) b = torch.randn(10, 10) c = torch.randn(10, 10) opt_fn = torch._dynamo.optimize(counter)(fn) self.assertRaises(AssertionError, lambda: opt_fn(a, b, c, AssertionError)) self.assertEqual(counter.frame_count, 1) self.assertEqual(counter.op_count, 3) def test_inplace(self): def inplace1(a, b): o = torch.empty((10, 10)) o.copy_(a) o -= b return o torch._dynamo.testing.standard_test(self, inplace1, 2, expected_ops=3) def test_unpack4(self): def unpack4(a, b): a = a[:5, :] b = b[:5, :] x, y = a.size() o = torch.empty((x, y)) o.copy_(a / b) return o torch._dynamo.testing.standard_test( self, unpack4, 2, expected_ops=5, expected_ops_dynamic=8 ) def test_unpack5(self): def unpack5(a, b): a = a[:5, :] b = b[:5, :] x, y = a.shape o = torch.empty((x, y)) o.copy_(a / b) return o torch._dynamo.testing.standard_test( self, unpack5, 2, expected_ops=5, expected_ops_dynamic=8 ) def test_matmul1(self): def matmul_op1(a, b): return a @ b # TODO(jansel): FX doesn't support this, should add upstream support torch._dynamo.testing.standard_test(self, matmul_op1, 2, expected_ops=1) def test_builtin_isinstance(self): def fn(x): t = torch.arange(1, 3) a = isinstance(x, torch.Tensor) b = isinstance(t, torch.Tensor) c = isinstance(x, int) d = isinstance(3, int) e = isinstance([1, 2, 3], list) f = isinstance({"foo": 1, "bar": 2}, dict) res = [a, b, c, d, e, f] # Can't run yet due to other unimplemented instructions # res += [isinstance(torch.nn.LazyLinear(2, 3), torch.nn.Linear)] return res torch._dynamo.testing.standard_test(self, fn, 1, expected_ops=1) def test_fold(self): def fn(a): return a + math.sqrt(63) torch._dynamo.testing.standard_test(self, fn, 1, expected_ops=1) def test_shape_unpack(self): def fn(x): a, b = x.size() return x * b i = torch.randn(5, 10) r1 = fn(i) opt_fn = torch._dynamo.optimize("eager")(fn) r2 = opt_fn(i) self.assertTrue(same(r1, r2)) def test_empty_list(self): def fn(x, ll): if len(ll) == 0 and not ll and ll is not None: return x + 1 i = torch.randn(5, 10) r1 = fn(i, []) opt_fn = torch._dynamo.optimize("eager")(fn) r2 = opt_fn(i, []) r3 = opt_fn(i, tuple()) self.assertTrue(same(r1, r2)) self.assertTrue(same(r1, r3)) def test_config_obj(self): class Cfg: def __init__(self): self.val = 0.5 self.count = 3 def fn(x, cfg): for i in range(cfg.count): x = x + cfg.val return x cfg1 = Cfg() cfg1.val = 1.0 cfg2 = Cfg() v = torch.zeros(1) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) v = opt_fn(v, cfg1) # 3 v = opt_fn(v, cfg2) # 4.5 cfg2.count = 1 v = opt_fn(v, cfg2) # 5 cfg2.val = 2.0 v = opt_fn(v, cfg2) # 7 self.assertEqual(v[0], 7) self.assertEqual(cnts.op_count, 8) def test_config_getattr_default(self): class Cfg: def __init__(self): self.val = 0.5 self.count = 10 def fn(x, cfg): if getattr(cfg, "just_add_7", False): return x + 7 for i in range(cfg.count): x = x + cfg.val return x cfg1 = Cfg() v = torch.zeros(1) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) self.assertEqual(opt_fn(v, cfg1)[0], 5) self.assertEqual(opt_fn(v, cfg1)[0], 5) cfg1.just_add_7 = True self.assertEqual(opt_fn(v, cfg1)[0], 7) self.assertEqual(opt_fn(v, cfg1)[0], 7) cfg1.just_add_7 = False self.assertEqual(opt_fn(v, cfg1)[0], 5) self.assertEqual(opt_fn(v, cfg1)[0], 5) self.assertEqual(cnts.frame_count, 3) def test_size_input(self): def fn(x, s): a, b = s return x + (a - b) v = torch.zeros(10, 20) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) self.assertEqual(opt_fn(v, v.size())[0, 0], -10) self.assertEqual(opt_fn(v, (10, 20))[0, 0], -10) self.assertEqual(opt_fn(v, [10, 20])[0, 0], -10) self.assertEqual(cnts.op_count, 2) def test_cell_output1(self): out = None def fn(a, b): nonlocal out out = a + b * 10 v = torch.Tensor([100]) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) self.assertIsNone(opt_fn(v, v)) self.assertEqual(out[0], 1100) self.assertEqual(cnts.op_count, 2) def test_cell_output2(self): out = None def fn(a, b): nonlocal out c = unsupported(a, b) out = a + b * 10 + c v = torch.Tensor([100]) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) self.assertIsNone(opt_fn(v, v)) self.assertEqual(out[0], 1200) self.assertEqual(cnts.op_count, 3) def test_return_nested_function(self): out = None def fn(a, b): nonlocal out c = a + b d = a + 1.0 def fn2(f: int = 7, g: float = 9.0): nonlocal out out = a + b * 10 return c * f - d * g return fn2 v1 = torch.Tensor([100]) v2 = torch.Tensor([200]) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) opt_fn_ret = torch._dynamo.optimize(cnts)(opt_fn(v1, v2)) self.assertEqual(opt_fn_ret(1.5)[0], -459) self.assertEqual(out[0], 2100) self.assertEqual(cnts.frame_count, 2) self.assertEqual(cnts.op_count, 7) def test_tensor_dict1(self): def fn(inputs): return inputs["a"] - inputs["b"] * 1.5 v1 = torch.Tensor([100]) v2 = torch.Tensor([200]) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) self.assertEqual(opt_fn({"a": v1, "b": v2})[0], -200) self.assertEqual(cnts.frame_count, 1) self.assertEqual(cnts.op_count, 2) def test_tensor_dict2(self): def fn1(inputs): total = torch.zeros(1) for k, v in inputs.items(): total += v return total def fn2(inputs): total = torch.zeros(1) for v in inputs.values(): total += v return total def fn3(inputs): total = torch.zeros(1) for k in inputs.keys(): total += inputs[k] return total v1 = torch.Tensor([100]) v2 = torch.Tensor([200]) cnts = torch._dynamo.testing.CompileCounter() opt_fn1 = torch._dynamo.optimize(cnts)(fn1) opt_fn2 = torch._dynamo.optimize(cnts)(fn2) opt_fn3 = torch._dynamo.optimize(cnts)(fn3) self.assertEqual(opt_fn1({"a": v1, "b": v2})[0], 300) self.assertEqual(opt_fn2({"a": v1, "b": v2})[0], 300) self.assertEqual(opt_fn3({"a": v1, "b": v2})[0], 300) self.assertEqual(cnts.frame_count, 3) self.assertEqual(cnts.op_count, 9) def test_dictcomp(self): def fn1(inputs): return {k: v + 1 for k, v in inputs.items()} v1 = torch.Tensor([100]) v2 = torch.Tensor([200]) cnts = torch._dynamo.testing.CompileCounter() opt_fn1 = torch._dynamo.optimize(cnts)(fn1) self.assertEqual(opt_fn1({"a": v1, "b": v2})["a"], 101) self.assertEqual(opt_fn1({"a": v1, "b": v2})["b"], 201) self.assertEqual(cnts.frame_count, 1) self.assertEqual(cnts.op_count, 2) def test_listcomp(self): def fn2(inputs): return torch.sum(torch.cat([v + 1 for k, v in inputs.items()], 0)) v1 = torch.Tensor([100]) v2 = torch.Tensor([200]) cnts = torch._dynamo.testing.CompileCounter() opt_fn2 = torch._dynamo.optimize(cnts)(fn2) self.assertEqual(opt_fn2({"a": v1, "b": v2}), 302) self.assertEqual(cnts.frame_count, 1) self.assertEqual(cnts.op_count, 4) def test_is_floating_point(self): def fn(a, b): x = a + 1.0 if torch.is_floating_point(b): x = x + b return x + 2.0 return torch._dynamo.testing.standard_test(self, fn=fn, nargs=2, expected_ops=3) def test_is_floating_point2(self): def fn(a, b): x = a + 1.0 if b.is_floating_point(): x = x + b return x + 2.0 return torch._dynamo.testing.standard_test(self, fn=fn, nargs=2, expected_ops=3) def test_is_tensor(self): def fn(a, b): x = a + 1.0 if torch.is_tensor(b): x = x + b return x + 2.0 return torch._dynamo.testing.standard_test(self, fn=fn, nargs=2, expected_ops=3) def test_numel(self): def fn(a): return a + a.numel() + torch.numel(a) return torch._dynamo.testing.standard_test( self, fn=fn, nargs=1, expected_ops=2, expected_ops_dynamic=4 ) def test_pair(self): def fn(a): return ( torch.zeros(torch.nn.modules.utils._pair(a.size())) + a + torch.ones(torch.nn.modules.utils._ntuple(3)(3)).sum() ) return torch._dynamo.testing.standard_test( self, fn=fn, nargs=1, expected_ops=5, expected_ops_dynamic=8 ) @patch.object(torch._dynamo.config, "capture_scalar_outputs", True) def test_tensor_item_capture(self): def fn(a, b): return (a + b).sum().item() v1 = torch.randn((10, 10)) v2 = torch.randn((10, 10)) correct = fn(v1, v2) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize((cnts))(fn) self.assertEqual(opt_fn(v1, v2), correct) self.assertEqual(cnts.frame_count, 1) self.assertEqual(cnts.op_count, 3) @patch.object(torch._dynamo.config, "capture_scalar_outputs", False) def test_tensor_item_no_capture(self): def fn(a, b): return (a + b).sum().item() v1 = torch.randn((10, 10)) v2 = torch.randn((10, 10)) correct = fn(v1, v2) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize((cnts))(fn) self.assertEqual(opt_fn(v1, v2), correct) self.assertEqual(cnts.frame_count, 1) self.assertEqual(cnts.op_count, 2) def test_namedtuple1(self): def fn(a, b): tmp = mytuple(a, b, a + b) return mytuple(tmp.a, tmp[1], tmp.ab + b) v1 = torch.Tensor([10]) v2 = torch.Tensor([20]) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) self.assertEqual(opt_fn(v1, v2).ab, 50) self.assertEqual(cnts.frame_count, 1) self.assertEqual(cnts.op_count, 2) def test_namedtuple2(self): def fn(packed): a, b, c = packed if hasattr(packed, "b"): b = packed.b + 1 c = packed[2] return a + b + c v1 = torch.Tensor([1]) v2 = torch.Tensor([2]) v3 = torch.Tensor([3]) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) self.assertEqual(opt_fn(mytuple(v1, v2, v3))[0], 7) self.assertEqual(cnts.frame_count, 1) self.assertEqual(cnts.op_count, 3) def test_range_input(self): def fn(a, rng): x = a for i in rng: x = x + i return x def fn1(a): return fn(a, rng=range(3)) return torch._dynamo.testing.standard_test( self, fn=fn1, nargs=1, expected_ops=3 ) def test_no_grad(self): def fn1(a, b): x = a + 1 # redundant no_grad should get ignored with torch.no_grad(): x = x + b x = x + 2 return x def fn2(a, b): x = a + 1 with torch.set_grad_enabled(False): x = x + b x = x + 2 return x def fn3(a, b): x = a + 1 with torch.enable_grad(): x = x + b x = x + 2 return x def fn4(a, b): x = a + 1 with torch.set_grad_enabled(True): if torch.is_grad_enabled(): x = x + b x = x + 2 return x with torch.no_grad(): torch._dynamo.testing.standard_test(self, fn=fn1, nargs=2, expected_ops=5) torch._dynamo.testing.standard_test(self, fn=fn2, nargs=2, expected_ops=5) torch._dynamo.testing.standard_test(self, fn=fn3, nargs=2, expected_ops=5) torch._dynamo.testing.standard_test(self, fn=fn4, nargs=2, expected_ops=5) with torch.enable_grad(): torch._dynamo.testing.standard_test(self, fn=fn1, nargs=2, expected_ops=5) torch._dynamo.testing.standard_test(self, fn=fn2, nargs=2, expected_ops=5) torch._dynamo.testing.standard_test(self, fn=fn3, nargs=2, expected_ops=5) torch._dynamo.testing.standard_test(self, fn=fn4, nargs=2, expected_ops=5) def test_grad_mode_guard(self): def fn(a, b): prev_grad = torch.is_grad_enabled() torch.set_grad_enabled(False) a = a + 1 a.tolist() # graph break ret = a + b torch.set_grad_enabled(prev_grad) return ret a = torch.randn([3, 4]) b = torch.randn([3, 4]) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) for _ in range(10): opt_fn(a, b) self.assertEqual(cnts.frame_count, 2) def test_build_tuple_unpack(self): def fn1(a, b, c): return a - b / c def fn2(a, b, c): tmp1 = (a,) tmp2 = (b, c) args = (*tmp1, *tmp2) return fn1(*args) def fn3(a, *args): return fn1(a, *args) torch._dynamo.testing.standard_test(self, fn=fn2, nargs=3, expected_ops=2) torch._dynamo.testing.standard_test(self, fn=fn3, nargs=3, expected_ops=2) def test_list_mul(self): def fn(count): head_mask = count * [None] * count return head_mask cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) self.assertEqual(opt_fn(2), [None] * 4) self.assertEqual(cnts.frame_count, 0) self.assertEqual(cnts.op_count, 0) def test_user_getattr1(self): class MyConfig(dict): def __getattr__(self, name): return self[name] def fn(cfg, x, y): return x + y + cfg.offset x = torch.randn(10) cfg = MyConfig(offset=5) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) self.assertTrue(same(opt_fn(cfg, x, x), 2 * x + 5)) self.assertEqual(cnts.frame_count, 1) self.assertEqual(cnts.op_count, 2) def test_user_getattr2(self): class MyConfig: defined_on_class = 1 def __init__(self): self.defined_on_object = 2 def __getattr__(self, name): return 3 def fn(cfg, x): return x + cfg.defined_on_class - cfg.defined_on_object + cfg.not_defined x = torch.randn(10) cfg = MyConfig() cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) self.assertTrue(same(opt_fn(cfg, x), x + 1 - 2 + 3)) self.assertEqual(cnts.frame_count, 1) self.assertEqual(cnts.op_count, 3) def test_user_property(self): class MyConfig: @property def prop5(self): return 5 def fn(cfg, x, y): return x + y + cfg.prop5 x = torch.randn(10) cfg = MyConfig() cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) self.assertTrue(same(opt_fn(cfg, x, x), 2 * x + 5)) self.assertEqual(cnts.frame_count, 1) self.assertEqual(cnts.op_count, 2) def test_dataclass_fields(self): @dataclasses.dataclass class MyDataClass: a: torch.Tensor b: torch.Tensor = None c: torch.Tensor = None d: torch.Tensor = None e: torch.Tensor = None def fn(obj): class_fields = dataclasses.fields(obj) assert len(class_fields) assert all(field.default is None for field in class_fields[1:]) other_fields_are_none = all( getattr(obj, field.name) is None for field in class_fields[1:] ) assert not other_fields_are_none total = getattr(obj, class_fields[0].name) for field in class_fields[1:]: v = getattr(obj, field.name) if v is not None: total += v return total obj1 = MyDataClass(torch.randn(10), torch.randn(10), torch.randn(10)) obj2 = MyDataClass(torch.randn(10), e=torch.randn(10)) correct1 = fn(obj1) correct2 = fn(obj2) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) self.assertTrue(same(opt_fn(obj1), correct1)) self.assertEqual(cnts.frame_count, 1) self.assertEqual(cnts.op_count, 2) torch._dynamo.reset() cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) self.assertTrue(same(opt_fn(obj2), correct2)) self.assertEqual(cnts.frame_count, 1) self.assertEqual(cnts.op_count, 1) @requires_static_shapes def test_tensor_build_list_unpack(self): def fn(x): # seen in fastNLP_Bert return torch.cat([*x], dim=-1) val = torch.randn([1, 1, 473, 768]) correct = fn(val) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) self.assertTrue(same(opt_fn(val), correct)) self.assertEqual(cnts.frame_count, 1) self.assertEqual(cnts.op_count, 2) def test_numpy_int_constant(self): def fn(x, a, b): return x + (a % b) args = [torch.randn(10), 4096, np.int64(8)] correct = fn(*args) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) self.assertTrue(same(opt_fn(*args), correct)) self.assertTrue(same(opt_fn(*args), correct)) self.assertEqual(cnts.frame_count, 1) self.assertEqual(cnts.op_count, 2) def test_dict_mutation_side_effect(self): def fn(d): d["c"] = d["a"] + d.pop("b") return d args1 = {"a": torch.randn(10), "b": torch.randn(10)} args2 = dict(args1) assert fn(args1) is args1 cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) self.assertIs(opt_fn(args2), args2) self.assertTrue(same(args1, args2)) self.assertEqual(cnts.frame_count, 1) self.assertEqual(cnts.op_count, 1) def test_module_deepcopy(self): m1 = torch.nn.Sequential( torch.nn.Linear(10, 10), torch.nn.ReLU(), torch.nn.Linear(10, 10), torch.nn.ReLU(), ) m2 = torch.nn.Sequential( torch.nn.Linear(10, 10), torch.nn.ReLU(), torch.nn.Linear(10, 10), torch.nn.ReLU(), ) def fn(m, x): m_copy = copy.deepcopy(m) return m_copy(x) v = torch.randn(10) correct1 = fn(m1, v) correct2 = fn(m2, v) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) for _ in range(10): self.assertTrue(same(opt_fn(m1, v), correct1)) for _ in range(10): self.assertTrue(same(opt_fn(m2, v), correct2)) self.assertEqual(cnts.frame_count, 1) self.assertEqual(cnts.op_count, 4) def test_type_copy(self): def fn(seq): a, b = seq return type(seq)([a + 1, b + 2, a + b]) args1 = [torch.randn(10), torch.randn(10)] args2 = (torch.randn(10), torch.randn(10)) correct1 = fn(args1) correct2 = fn(args2) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) self.assertTrue(same(opt_fn(args1), correct1)) self.assertTrue(same(opt_fn(args2), correct2)) self.assertIsInstance(opt_fn(args1), list) self.assertIsInstance(opt_fn(args2), tuple) self.assertEqual(cnts.frame_count, 2) self.assertEqual(cnts.op_count, 6) def test_setattr_mutation1(self): class MyObj: # noqa: B903 def __init__(self, a, b): self.a = a self.b = b def fn(obj): obj.c = obj.a * obj.b + 1 obj.b = obj.a * obj.c + 2 obj.a = obj.b * obj.c + 3 obj.c = obj.a * obj.b + 4 obj.b = obj.a * obj.c + 5 obj.a = obj.b * obj.c + 6 return obj x1 = torch.randn(10) x2 = torch.randn(10) obj1 = MyObj(x1, x2) obj2 = MyObj(x1, x2) fn(obj2) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) self.assertIs(opt_fn(obj1), obj1) self.assertTrue(same(obj1.a, obj2.a)) self.assertTrue(same(obj1.b, obj2.b)) self.assertTrue(same(obj1.c, obj2.c)) self.assertEqual(cnts.frame_count, 1) self.assertEqual(cnts.op_count, 12) def test_setattr_mutation2(self): class MyObj: def __init__(self, x): self.a = x + 1 self.b = x + 2 def fn(x): x = x / 3.0 obj = MyObj(x) obj.c = obj.a * obj.b + 1 obj.b = obj.a * obj.c + 2 obj.a = obj.b * obj.c + 3 return obj x1 = torch.randn(10) obj2 = fn(x1) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) obj1 = opt_fn(x1) self.assertTrue(same(obj1.a, obj2.a)) self.assertTrue(same(obj1.b, obj2.b)) self.assertTrue(same(obj1.c, obj2.c)) self.assertEqual(cnts.frame_count, 1) self.assertEqual(cnts.op_count, 9) def test_setattr_mutation3(self): # TODO(jansel): dead code eliminate the object creation class MyObj: def __init__(self, x): super().__init__() self.a = x + 1 self.b = x + 2 def fn(x): x = x / 3.0 obj = MyObj(x) obj.c = obj.a * obj.b + 1 obj.b = obj.a * obj.c + 2 obj.a = obj.b * obj.c + 3 return obj.a, obj.b, obj.c x1 = torch.randn(10) obj2 = fn(x1) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) obj1 = opt_fn(x1) self.assertTrue(same(obj1, obj2)) self.assertEqual(cnts.frame_count, 1) self.assertEqual(cnts.op_count, 9) def test_user_defined_class_name(self): class MyClassFoo: pass def fn1(a, b, c): tmp = MyClassFoo() if tmp.__class__.__name__ == "MyClassFoo": return a - b / c torch._dynamo.testing.standard_test(self, fn=fn1, nargs=3) def test_manual_seed(self): def fn(a, b): x = a + b torch.manual_seed(9000) return x + 1 torch._dynamo.testing.standard_test(self, fn=fn, nargs=2, expected_ops=3) def test_usr_cls_staticmethod(self): class Foo: @staticmethod def bar(a, b): return a + b def fn(a, b): return Foo.bar(a, b) - 1 torch._dynamo.testing.standard_test(self, fn=fn, nargs=2) def test_usr_cls_classmethod(self): class Foo: @classmethod def bar(cls, a, b): return a + b def fn(a, b): return Foo.bar(a, b) - 1 torch._dynamo.testing.standard_test(self, fn=fn, nargs=2) def test_dunder_methods(self): class Foo: def __init__(self, val): super().__init__() self.val = val def __add__(self, other): return Foo(self.val + other.val) def __mul__(self, other): return Foo(self.val * other.val) def __truediv__(self, other): return Foo(self.val / other.val) def __sub__(self, other): return Foo(self.val - other.val) def fn(a, b, c): return Foo(a) + Foo(b) * Foo(c) / Foo(a) - Foo(b) torch._dynamo.testing.standard_test(self, fn=fn, nargs=3, expected_ops=4) def test_function_annotation(self): class Variable: pass def fn(x): x = x / 3.0 def inner(y: typing.List[Variable]): return x + 1 return inner x1 = torch.randn(10) obj2 = fn(x1)([]) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize_assert(cnts)(fn) opt_fn_inner = torch._dynamo.optimize_assert(cnts)(opt_fn(x1)) obj1 = opt_fn_inner([]) self.assertTrue(same(obj1, obj2)) self.assertEqual(cnts.frame_count, 2) self.assertEqual(cnts.op_count, 2) def test_nested_closure(self): v0 = torch.randn(10) def fn1(): v1 = torch.randn(10) def fn2(*args, **kwargs): assert len(args) == 1 assert len(kwargs) == 1 v2 = torch.randn(10) + args[0] + kwargs["b"] def fn3(v3=torch.randn(10)): def fn4(): return v0 + v1 + v2 + v3 + 1 return fn4 return fn3 return fn2(1, b=2)() cnts = torch._dynamo.testing.CompileCounter() opt_fn1 = torch._dynamo.optimize_assert(cnts)(fn1) tmp1 = torch._dynamo.optimize_assert(cnts)(opt_fn1()) tmp2 = torch._dynamo.optimize_assert(cnts)(opt_fn1()) self.assertTrue(tmp1().shape, (10,)) self.assertTrue(same(tmp1(), tmp1())) self.assertFalse(same(tmp1(), tmp2())) self.assertEqual(cnts.frame_count, 2) self.assertEqual(cnts.op_count, 9) def test_nested_closure_mutation(self): def fn1(): v1 = torch.randn(10) def fn2(): v2 = torch.randn(10) def fn3(): nonlocal v1, v2 v1 += 1 v2 += 2 return v1 + v2 return fn3 rv = fn2() rv() rv() return rv torch.manual_seed(9000) counter1 = fn1() result1 = [counter1(), counter1(), counter1()] torch.manual_seed(9000) cnts = torch._dynamo.testing.CompileCounter() opt_fn1 = torch._dynamo.optimize_assert(cnts)(fn1) counter2 = torch._dynamo.optimize_assert(cnts)(opt_fn1()) result2 = [counter2(), counter2(), counter2()] result1.append(counter1()) result2.append(counter2()) self.assertTrue(same(result1, result2)) self.assertEqual(cnts.frame_count, 2) self.assertEqual(cnts.op_count, 11) def test_write_to_closures_in_inlining(self): out = [] for use_dynamo in [False, True]: def make_counter(): x = torch.randn(10) def counter(): nonlocal x x = x + 1 return x return counter torch.manual_seed(0) counter = make_counter() if not use_dynamo: out.append(counter() + counter()) else: cnts = torch._dynamo.testing.CompileCounter() @torch._dynamo.optimize(cnts, nopython=True) def fn(counter): return counter() + counter() out.append(fn(counter)) self.assertEqual(cnts.frame_count, 1) self.assertEqual(cnts.op_count, 3) self.assertFalse(same(counter() + counter(), out[-1])) self.assertTrue(same(out[0], out[1])) def test_top_package_import(self): def fn(x): import torch.fx assert not isinstance(x, torch.fx.Proxy) return torch.sin(x) x = torch.randn(4, 5) ref = fn(x) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize_assert(cnts)(fn) res = opt_fn(x) self.assertTrue(same(ref, res)) def test_optimize_on_module(self): class MockModule(torch.nn.Module): def __init__(self): super().__init__() self.relu = torch.nn.ReLU() def custom_member(self): # Just for checking that Dynamo returned mod object can redirect # to this method pass def forward(self, x): return self.relu(x) cnts1 = torch._dynamo.testing.CompileCounter() mod = MockModule() optimized_mod = torch._dynamo.optimize(cnts1, nopython=True)(mod) a = torch.randn(10) ref = mod(a) res = optimized_mod(a) optimized_mod.custom_member() self.assertTrue(same(ref, res)) def test_nested_optimize_decorator(self): cnts2 = torch._dynamo.testing.CompileCounter() cnts3 = torch._dynamo.testing.CompileCounter() @torch._dynamo.run() def fn1(x): return torch.sin(x) * 10 @torch._dynamo.optimize(cnts2, nopython=True) def fn2(x): return fn1(x) + 1 @torch._dynamo.optimize(cnts3, nopython=True) def fn3(x): return torch.relu(fn2(x)) fn3(torch.randn(4, 5)) self.assertEqual(cnts2.frame_count, 0) self.assertEqual(cnts3.frame_count, 1) self.assertEqual(cnts3.op_count, 4) def test_nested_optimize_run(self): cnts = torch._dynamo.testing.CompileCounter() @torch._dynamo.optimize(cnts, nopython=True) def fn(x): return torch.relu(torch.cos(x) + torch.sin(x)) fn(torch.randn(4)) self.assertEqual(cnts.frame_count, 1) fn(torch.randn(4, 4)) self.assertEqual(cnts.frame_count, 2) # Test that run works on a decorated fn fn = torch._dynamo.run(fn) fn(torch.randn(4, 4, 4)) self.assertEqual(cnts.frame_count, 2) def test_nested_optimize(self): cnts1 = torch._dynamo.testing.CompileCounter() cnts2 = torch._dynamo.testing.CompileCounter() def fn(x): return torch.relu(torch.cos(x) + torch.sin(x)) fn1 = torch._dynamo.optimize(cnts1, nopython=True)(fn) fn2 = torch._dynamo.optimize(cnts2, nopython=True)(fn1) # The first optimize in the nesting should be ignored fn2(torch.randn(4)) self.assertEqual(cnts2.frame_count, 1) self.assertEqual(cnts1.frame_count, 0) # Since the fn code object is already compiled, calling fn1 should # directly call the compiled_fn callable. torch._dynamo.run()(fn1)(torch.randn(4)) self.assertEqual(cnts1.frame_count, 0) # Test same behavior by reversing the calls torch._dynamo.reset() cnts1 = torch._dynamo.testing.CompileCounter() cnts2 = torch._dynamo.testing.CompileCounter() fn1 = torch._dynamo.optimize(cnts1, nopython=True)(fn) fn2 = torch._dynamo.optimize(cnts2, nopython=True)(fn1) fn1(torch.randn(4)) self.assertEqual(cnts1.frame_count, 1) torch._dynamo.run()(fn2)(torch.randn(4)) self.assertEqual(cnts2.frame_count, 0) def test_nested_disable_decorator(self): cnts = torch._dynamo.testing.CompileCounter() @torch._dynamo.disable() def fn1(x): return torch.sin(x) * 10 @torch._dynamo.optimize(cnts) def fn2(x): x = x + 1 x = x + 1 x = fn1(x) # graph break x = x + 1 x = x + 1 return x @torch._dynamo.optimize(cnts, nopython=True) def fn3(x): return fn2(x) fn2(torch.randn(4, 5)) self.assertEqual(cnts.frame_count, 2) self.assertEqual(cnts.op_count, 4) try: fn3(torch.randn(4, 5)) self.assertFalse(True) except torch._dynamo.exc.Unsupported as e: self.assertIn("call torch._dynamo.disable() wrapped function", str(e)) def test_graph_break(self): cnts = torch._dynamo.testing.CompileCounter() @torch._dynamo.optimize(cnts) def fn(x): x = torch.cos(x) x = torch.cos(x) torch._dynamo.graph_break() x = torch.cos(x) x = torch.cos(x) graph_break() x = torch.cos(x) x = torch.cos(x) return x fn(torch.randn(4, 5)) self.assertEqual(cnts.frame_count, 3) self.assertEqual(cnts.op_count, 6) def test_torch_size(self): cnts = torch._dynamo.testing.CompileCounter() def fn(x): output_size = torch.Size([10, 10]) x = x.view(*output_size) return (x,) x = torch.randn(100, requires_grad=True) x_clone = x.clone() ref = fn(x) opt_fn = torch._dynamo.optimize(cnts, nopython=True)(fn) res = opt_fn(x_clone) self.assertTrue(same(ref, res)) def test_torch_seed(self): cnts = torch._dynamo.testing.CompileCounter() def fn(x): attention_seed = int(torch.seed() % sys.maxsize) torch.manual_seed(attention_seed) return (x,) x = torch.randn(100, requires_grad=True) ref = fn(x) opt_fn = torch._dynamo.optimize(cnts, nopython=True)(fn) res = opt_fn(x) self.assertTrue(same(ref, res)) def test_is_tensor_like(self): cnts = torch._dynamo.testing.CompileCounter() def f(x): if torch.overrides.is_tensor_like(x): return (x * 2,) return (torch.ones(10) + x,) x = torch.randn(10) ref0 = f(x) ref1 = f(4) opt_f = torch._dynamo.optimize(cnts, nopython=True)(f) res0 = opt_f(x) res1 = opt_f(4) self.assertTrue(same(ref0, res0)) self.assertTrue(same(ref1, res1)) def test_version_ci(self): # temporary test to check that the ci torch version is set correctly self.assertTrue(hasattr(torch, "_subclasses")) @unittest.skipIf(not torch.cuda.is_available(), "requires cuda") def test_rand(self): cnts = torch._dynamo.testing.CompileCounter() device = "cuda" def fn(): return torch.randn(10, device=device) torch.manual_seed(10) ref_run1 = fn() torch.manual_seed(10) ref_run2 = fn() self.assertTrue(same(ref_run1, ref_run2)) torch.manual_seed(10) opt_fn = torch._dynamo.optimize(cnts, nopython=True)(fn) res = opt_fn() self.assertTrue(same(res, ref_run1)) def test_slice_input(self): cnts = torch._dynamo.testing.CompileCounter() def getitem(a, idx): if isinstance(idx, slice): return ( torch.zeros(1), a[idx] + [ 100, ], ) else: return (torch.zeros(1), a[idx]) layers = list(range(10)) ref0 = getitem(layers, slice(0, 2, 1)) ref1 = getitem(layers, 2) ref2 = getitem(layers, slice(3, 8, 2)) opt_getitem = torch._dynamo.optimize(cnts, nopython=True)(getitem) res0 = opt_getitem(layers, slice(0, 2, 1)) res1 = opt_getitem(layers, 2) res2 = opt_getitem(layers, slice(3, 8, 2)) self.assertTrue(ref0 == res0) self.assertTrue(ref1 == res1) self.assertTrue(ref2 == res2) def test_grad(self): cnts = torch._dynamo.testing.CompileCounter() def fn(a, b): out = a * b out.sum().backward() real_out = torch.sigmoid(a.grad + b) return real_out inps = [torch.randn(4, requires_grad=True) for _ in range(2)] for inp in inps: inp.grad = None ref = fn(*inps) for inp in inps: inp.grad = None opt_fn = torch._dynamo.optimize(cnts)(fn) res = opt_fn(*inps) self.assertTrue(same(ref, res)) @unittest.skipIf(sys.version_info < (3, 10), "use linetable when python >= 3.10") def test_linetable_writer(self): def fn(): a = 10 b = 20 c = a + b f = "linetable_writer" return f"Test if {f} generates correct co_linetable: {c}" inst = dis.get_instructions(fn) result = bytecode_transformation.assemble(inst, fn.__code__.co_firstlineno) self.assertTrue(result[1] == fn.__code__.co_linetable) @unittest.skipIf(sys.version_info >= (3, 10), "use lnotab when python < 3.10") def test_lnotab_writer(self): def fn(): a = 10 b = 20 c = a + b f = "lnotab_writer" return f"Test if {f} generates correct co_lnotab: {c}" inst = dis.get_instructions(fn) result = bytecode_transformation.assemble(inst, fn.__code__.co_firstlineno) self.assertTrue(result[1] == fn.__code__.co_lnotab) def test_torch_profiler(self): # wrap torch.profiler.* as ProfilerContextWrapperVariable and do nothing def fn(x): y = x**2 with torch.profiler.profile(): y = y + 2 with torch.profiler.record_function("my_function"): z = y**3 z.tolist() # graph break z = z + 1 return z x = torch.randn((2, 2), requires_grad=True) ref = fn(x) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) res = opt_fn(x) self.assertTrue(same(ref, res)) self.assertEqual(cnts.frame_count, 2) def test_autograd_profiler(self): # wrap torch.autograd.profiler.* as ProfilerContextWrapperVariable and do nothing def fn(x): y = x**2 with torch.autograd.profiler.profile(): y = y + 2 with torch.autograd.profiler.record_function("my_function"): z = y**3 z.tolist() # graph break z = z + 1 return z x = torch.randn((2, 2), requires_grad=True) ref = fn(x) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) res = opt_fn(x) self.assertTrue(same(ref, res)) self.assertEqual(cnts.frame_count, 2) def test_python_slice(self): def f1(input): y = 0 for i, x in enumerate(input[2:], 1): y = y + x return y def f2(input): y = 0 for i, x in enumerate(input.shape[2:], 1): y = y + x return y cnts = torch._dynamo.testing.CompileCounter() opt_f1 = torch._dynamo.optimize(cnts)(f1) opt_f2 = torch._dynamo.optimize(cnts)(f2) res1 = opt_f1([1, 2, 3, 5]) res2 = opt_f2(torch.rand([2, 3, 4, 5])) self.assertEqual(res1, 8) self.assertEqual(res2, 9) def test_const_dict_variable_python_type(self): from torch._dynamo.variables import ConstDictVariable d1 = {"a": 10, "b": 20} d2 = collections.OrderedDict([("x", 12), ("y", 22)]) self.assertEqual(ConstDictVariable(d1, dict).python_type(), dict) self.assertEqual( ConstDictVariable(d2, collections.OrderedDict).python_type(), collections.OrderedDict, ) def test_builtin_subclasses_as_method_on_class_type(self): class Foo: def __init__(self, name): self.ame_ = name def get_name(self): return "Foo " + self.name_ class Bar(Foo): def __init__(self, name): self.name_ = name def get_name(self): return "Bar " + self.name_ class Baz(Foo): def __init__(self, name): # noqa: B903 self.name_ = name def get_name(self): return "Baz " + self.name_ subs_of_foo_reg = Foo.__subclasses__() counter = CompileCounter() @torch._dynamo.optimize_assert(counter) def fn(): return Foo.__subclasses__() subs_of_foo_optim = fn() self.assertEqual(len(subs_of_foo_reg), 2) self.assertEqual(subs_of_foo_reg, subs_of_foo_optim) def test_builtin_subclasses_as_method_on_var(self): class Foo: def __init__(self, name): self.name_ = name def get_name(self): return "Foo " + self.name_ class Bar(Foo): def __init__(self, name): self.name_ = name def get_name(self): return "Bar " + self.name_ class Baz(Bar): def __init__(self, name): self.name_ = name def get_name(self): return "Baz " + self.name_ subs_of_foo_reg = Foo.__subclasses__() sub_of_foo_subclass_var_reg = subs_of_foo_reg[0].__subclasses__() sub_of_foo_subclass_var_optim = list() counter = CompileCounter() @torch._dynamo.optimize_assert(counter) def fn(): return Foo.__subclasses__() @torch._dynamo.optimize_assert(counter) def fn_single(subs_of_foo_optim): return subs_of_foo_optim[0].__subclasses__() subs_of_foo_optim = fn() sub_of_foo_subclass_var_optim = fn_single(subs_of_foo_optim) self.assertEqual(len(sub_of_foo_subclass_var_optim), 1) self.assertEqual(sub_of_foo_subclass_var_optim, sub_of_foo_subclass_var_reg) def test_enum_no_graphbreaks(self): class Foo(enum.Enum): FOO = 0 BAR = 1 def fn(x, foo): if foo is Foo.FOO: x = torch.add(x, 1.0) x = torch.mul(x, 1.0) return x x = torch.randn(1) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts, nopython=True)(fn) opt_fn(x, Foo.FOO) self.assertEqual(cnts.op_count, 2) torch._dynamo.reset() cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts, nopython=True)(fn) opt_fn(x, Foo.BAR) self.assertEqual(cnts.op_count, 1) def test_id_of_nn_module(self): class M(torch.nn.Module): def forward(self, x, ref_id): self_id = id(self) if self_id == ref_id: x = torch.mul(x, 1.0) x = torch.add(x, 1.0) return x m = M().eval() data = torch.randn(1) cnts = torch._dynamo.testing.CompileCounter() correct_ref_id = id(m) opt_m = torch._dynamo.optimize(cnts, nopython=True)(m) opt_m(data, correct_ref_id) self.assertEqual(cnts.op_count, 2) torch._dynamo.reset() cnts = torch._dynamo.testing.CompileCounter() incorrect_ref_id = id(m) + 1 opt_m = torch._dynamo.optimize(cnts, nopython=True)(m) opt_m(data, incorrect_ref_id) self.assertEqual(cnts.op_count, 1) def test_inline_func_jump_on_tensor_condition(self): def f1(input): if input == 0: return input + 1 else: return input + 2 def f2(input): return f1(input) cnts = torch._dynamo.testing.CompileCounter() opt_f2 = torch._dynamo.optimize(cnts)(f2) res1 = opt_f2(torch.tensor([1.0])) res2 = opt_f2(torch.tensor([0.0])) self.assertEqual(res1, 3) self.assertEqual(res2, 1) def test_frozenset_torch_func_contains(self): funcs = frozenset([torch.add]) def fn(x, func): if func in funcs: x = torch.add(x, 1.0) x = torch.mul(x, 1.0) return x x = torch.randn(1) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts, nopython=True)(fn) opt_fn(x, torch.add) self.assertEqual(cnts.op_count, 2) torch._dynamo.reset() cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts, nopython=True)(fn) opt_fn(x, torch.mul) self.assertEqual(cnts.op_count, 1) @patch.object(torch._dynamo.config, "fake_tensor_propagation", True) def test_unsupported_fake_tensor(self): def f(x): return torch.quantize_per_tensor(x, 0.1, 10, torch.quint8) x = torch.randn(2, 2) cnts = torch._dynamo.testing.CompileCounter() opt_f = torch._dynamo.optimize(cnts)(f) opt_f(x) self.assertEqual(cnts.op_count, 0) torch._dynamo.reset() with patch.object(torch._dynamo.config, "fake_tensor_propagation", False): opt_f = torch._dynamo.optimize_assert( torch._dynamo.testing.CompileCounter() )(f) opt_f(x) def test_inline_list_mutation(self): def f1(x): x.append(torch.ones(8)) return x def f2(): x = [torch.ones(6)] f1(x) return x res1 = f2() cnts = torch._dynamo.testing.CompileCounter() opt_f2 = torch._dynamo.optimize(cnts)(f2) res2 = opt_f2() self.assertTrue(same(res1, res2)) def test_inline_dict_mutation(self): def f1(d): d["c"] = d["a"] + d.pop("b") return d def f2(): d = {"a": torch.ones(5), "b": torch.ones(5)} f1(d) return d res1 = f2() cnts = torch._dynamo.testing.CompileCounter() opt_f2 = torch._dynamo.optimize(cnts)(f2) res2 = opt_f2() self.assertTrue(same(res1, res2)) def test_recursive_inline_list_mutation(self): def f1(x, y): x.append(torch.tensor([1.1])) y.append(torch.tensor([1.2])) return x, y def f2(x, y): x.append(torch.tensor([2.1])) y.append(torch.tensor([2.2])) f1(x, y) return x, y def f3(x): x.append(torch.tensor([3.1])) y = [torch.tensor([3.2])] f2(x, y) return x, y def f4(): x = [torch.tensor([4.1])] return f3(x) res1 = f4() cnts = torch._dynamo.testing.CompileCounter() opt_f4 = torch._dynamo.optimize(cnts)(f4) res2 = opt_f4() self.assertTrue(same(res1, res2)) def test_disallow_in_graph(self): cnts = torch._dynamo.testing.CompileCounter() @torch._dynamo.optimize(cnts) def fn(a): x = torch.add(a, 1) x = torch.add(x, 1) x = torch.sub(x, 1) x = torch.add(x, 1) x = torch.add(x, 1) return x torch._dynamo.disallow_in_graph(torch.sub) fn(torch.randn(10)) torch._dynamo.allow_in_graph(torch.sub) # check for graph break on sub self.assertEqual(cnts.frame_count, 2) self.assertEqual(cnts.op_count, 4) def test_allow_in_graph(self): cnts = torch._dynamo.testing.CompileCounter() @torch._dynamo.optimize(cnts) def fn(a): x = torch.add(a, 1) x = torch.add(x, 1) x = my_custom_function(x) x = torch.add(x, 1) x = torch.add(x, 1) return x torch._dynamo.allow_in_graph(my_custom_function) fn(torch.randn(10)) torch._dynamo.disallow_in_graph(my_custom_function) # check for no graph break self.assertEqual(cnts.frame_count, 1) self.assertEqual(cnts.op_count, 5) def test_sample_input(self): from torch.testing._internal.common_methods_invocations import SampleInput def fn(sample): if isinstance(sample.input, torch.Tensor): return sample.input * 2 return torch.zeros(()) sample = SampleInput(torch.ones(2)) ref = fn(sample) opt_fn = torch._dynamo.optimize("eager")(fn) res = opt_fn(sample) self.assertTrue(same(ref, res)) def test_release_input_memory(self): x = torch.rand([4]) x_ref = weakref.ref(x) cnts = torch._dynamo.testing.CompileCounter() @torch._dynamo.optimize(cnts) def foo(x): return x + x out = foo(x) self.assertTrue(same(out, x + x)) del x self.assertIs(x_ref(), None) def test_release_module_memory(self): mod = torch.nn.Linear(10, 10) x = torch.rand([10, 10]) mod_weight_ref = weakref.ref(mod.weight) mod_ref = weakref.ref(mod) # Modules that are passed into torch._dynamo optimized functions # will normally be held onto through the generated GraphModule, # which contains the modules. remove the reference in this backend # and test that no additional references are being held. class NoLeakBackend: def __call__(self, gm: torch.fx.GraphModule, example_inputs): gm.mod = None def foo(*args, **kwargs): return (1,) return foo no_leak_backend = NoLeakBackend() @torch._dynamo.optimize(no_leak_backend) def foo(mod, x): return mod(x) foo(mod, x) del mod del x self.assertIsNone(mod_ref(), None) self.assertIsNone(mod_weight_ref(), None) def test_update_locals_and_stack_uses_shared_cache(self): def fn(x): perm = [0, 3, 5] perm = list(range(min(perm))) + perm perm.extend(i for i in range(x.dim()) if i not in perm) return perm x = torch.rand([2, 2, 2, 2, 2, 2]) res1 = fn(x) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) res2 = opt_fn(x) self.assertTrue(same(res1, res2)) def test_dict_reconstruct_keeps_original_order(self): def fn(): modules = collections.OrderedDict([("act", torch.nn.ReLU())]) module_dict = torch.nn.ModuleDict(modules) next_modules = {"fc4": torch.nn.Linear(5, 6), "act3": torch.nn.Sigmoid()} modules.update(next_modules.items()) module_dict.update(next_modules) return modules, module_dict cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) modules, module_dict = opt_fn() self.assertEqual(len(module_dict), len(modules)) for k1, m2 in zip(modules, module_dict.children()): self.assertTrue(modules[k1] is m2) def test_side_effects_codegen_update_mutated(self): # codegen to update mutated variables with side effect # should after stack value's codegen def f1(x): alist = [x] alist.append(x + 1) alist[0].sum().item() # graph break res = alist.pop() res.sum().item() # graph break return res def f2(a, b): d = {"a": a + 1, "b": b + 2} x = d.pop("b") x.sum().item() # graph break y = d["a"] + x y.sum().item() # graph break d["c"] = y return d x = torch.rand([2, 3]) a = torch.rand([5, 6]) b = torch.rand([5, 6]) res11 = f1(x) res21 = f2(a, b) cnts = torch._dynamo.testing.CompileCounter() opt_f1 = torch._dynamo.optimize(cnts)(f1) opt_f2 = torch._dynamo.optimize(cnts)(f2) res12 = opt_f1(x) res22 = opt_f2(a, b) self.assertTrue(same(res11, res12)) self.assertTrue(same(res21, res22)) def test_list_append_return_none(self): def fn(x): alist = [] blist = alist.append(x + 1) return alist, blist x = torch.tensor([2.3]) res = fn(x) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) res2 = opt_fn(x) self.assertEqual(res, res2) def test_tensor_types(self): def fn(dtype, tensor_type): x = torch.empty(4, dtype=dtype) assert isinstance(x, tensor_type) opt_fn = torch._dynamo.optimize("eager")(fn) opt_fn(torch.float32, torch.FloatTensor) opt_fn(torch.float64, torch.DoubleTensor) opt_fn(torch.float16, torch.HalfTensor) opt_fn(torch.bfloat16, torch.BFloat16Tensor) opt_fn(torch.uint8, torch.ByteTensor) opt_fn(torch.int8, torch.CharTensor) opt_fn(torch.int64, torch.LongTensor) opt_fn(torch.int, torch.IntTensor) opt_fn(torch.int16, torch.ShortTensor) opt_fn(torch.bool, torch.BoolTensor) def test_nan(self): def f(x, n): return x * 2 + n x = torch.randn(4) n = float("nan") cnts = torch._dynamo.testing.CompileCounter() opt_f = torch._dynamo.optimize(cnts)(f) opt_f(x, n) opt_f(x, n) self.assertEqual(cnts.frame_count, 1) @patch.object(torch._dynamo.config, "capture_scalar_outputs", True) def test_item(self): class MyMod(torch.nn.Module): def forward(self, x): z = torch.max(x) return z.int().item() x = torch.tensor([[10.6763, 11.7445, -2.2369]]) model = MyMod() y = torch._dynamo.optimize("eager", nopython=True)(model)(x) self.assertEqual(y, 11) @patch.object(torch._dynamo.config, "capture_scalar_outputs", True) def test_item_changes(self): class MyMod(torch.nn.Module): def forward(self, x): z = torch.max(x) return z.int().item() x = torch.tensor([[10.6763, 11.7445, -2.2369]]) model = MyMod() opt_model = torch._dynamo.optimize("eager", nopython=True)(model) y = opt_model(x) z = opt_model(torch.tensor([[y - 5, y + 10, y + 50]])) self.assertEqual(y, 11) self.assertEqual(z, 61) @patch.object(torch._dynamo.config, "capture_scalar_outputs", True) def test_item_changes_new_shape(self): class MyMod(torch.nn.Module): def forward(self, x): z = torch.max(x) return z.int().item() x = torch.tensor([[10.6763, 11.7445, -2.2369]]) model = MyMod() opt_model = torch._dynamo.optimize("eager", nopython=True)(model) y = opt_model(x) z = opt_model(torch.tensor([[y - 5, y + 50], [y + 5, y - 50]])) self.assertEqual(y, 11) self.assertEqual(z, 61) def test_cross_entropy_loss_fancy_ctor(self): output = None rand_5 = torch.randn(5) rand_3_5 = torch.randn(3, 5) target = torch.empty(3, dtype=torch.long).random_(5) loss = torch.nn.CrossEntropyLoss( weight=rand_5, reduce=False, label_smoothing=0.5 ) opt_loss = torch._dynamo.optimize("eager", nopython=True)(loss) input = rand_3_5 dynamo_output = opt_loss(input, target) loss = torch.nn.CrossEntropyLoss( weight=rand_5, reduce=False, label_smoothing=0.5 ) input = rand_3_5 output = loss(input, target) self.assertTrue(torch.allclose(dynamo_output, output)) def test_cross_entropy_loss_simple_ctor(self): output = None rand_3_5 = torch.randn(3, 5) target = torch.empty(3, dtype=torch.long).random_(5) loss = torch.nn.CrossEntropyLoss() opt_loss = torch._dynamo.optimize("eager", nopython=True)(loss) input = rand_3_5 dynamo_output = opt_loss(input, target) loss = torch.nn.CrossEntropyLoss() input = rand_3_5 output = loss(input, target) self.assertTrue(torch.allclose(dynamo_output, output)) def test_large_reduction_list(self): dtype = torch.float32 device = "cpu" def check_sum_all(tensor: torch.Tensor) -> None: pylist = tensor.reshape(-1).tolist() self.assertTrue(same(tensor.sum(), torch.tensor(sum(pylist)))) check_sum_all(torch.randn(200000, dtype=dtype, device=device)) @patch.object(torch._dynamo.config, "raise_on_backend_error", True) def test_raise_on_backend_error(self): def my_compiler(gm, _): raise RuntimeError("duck!") @torch._dynamo.optimize(my_compiler) def fn(a, b): return a + b / (a - b) self.assertRaises( torch._dynamo.exc.BackendCompilerFailed, lambda: fn(torch.randn(10), torch.randn(10)), ) def test_named_parameters(self): n_embd = 768 block_size = 128 vocab_size = 65 embd_pdrop = 0.1 class MyModel2(torch.nn.Module): def __init__(self): super().__init__() self.tok_emb = torch.nn.Embedding(vocab_size, n_embd) self.pos_emb = torch.nn.Parameter(torch.zeros(1, block_size, n_embd)) self.drop = torch.nn.Dropout(embd_pdrop) def forward(self, x): return x class MyModel(torch.nn.Module): def __init__(self): super().__init__() self.tok_emb = torch.nn.Embedding(vocab_size, n_embd) self.pos_emb = torch.nn.Parameter(torch.zeros(1, block_size, n_embd)) self.drop = torch.nn.Dropout(embd_pdrop) self.submod2 = MyModel2() def forward(self, x): return x # Regular params = [] mod = MyModel() actual_params = list(mod.named_parameters()) @torch._dynamo.optimize("eager", nopython=True) def fn(): return list(mod.named_parameters()) params = fn() self.assertEqual(len(actual_params), len(params)) for idx in range(len(params)): k_a, v_a = actual_params[idx] k, v = params[idx] self.assertEqual(k_a, k) self.assertTrue(torch.allclose(v_a, v)) # Prefix params = [] mod = MyModel() actual_params = list(mod.named_parameters(prefix="foo")) @torch._dynamo.optimize("eager", nopython=True) def fn1(): return list(mod.named_parameters(prefix="foo")) params = fn1() self.assertEqual(len(actual_params), len(params)) for idx in range(len(params)): k_a, v_a = actual_params[idx] k, v = params[idx] self.assertEqual(k_a, k) self.assertTrue(torch.allclose(v_a, v)) def test_module_complex_iter(self): n_embd = 768 block_size = 128 vocab_size = 65 embd_pdrop = 0.1 class FakeGPT(torch.nn.Module): def __init__(self): super().__init__() self.tok_emb = torch.nn.Embedding(vocab_size, n_embd) self.pos_emb = torch.nn.Parameter(torch.zeros(1, block_size, n_embd)) self.drop = torch.nn.Dropout(embd_pdrop) self.ln_f = torch.nn.LayerNorm(n_embd) self.head = torch.nn.Linear(n_embd, vocab_size, bias=False) self.block_size = block_size self.names = [] def forward(self, idx, targets=None): from torch.nn import functional as F b, t = idx.size() assert ( t <= self.block_size ), "Cannot forward, model block size is exhausted." # forward the GPT model token_embeddings = self.tok_emb( idx ) # each index maps to a (learnable) vector position_embeddings = self.pos_emb[ :, :t, : ] # each position maps to a (learnable) vector x = self.drop(token_embeddings + position_embeddings) x = self.blocks(x) x = self.ln_f(x) logits = self.head(x) # if we are given some desired targets also calculate the loss loss = None if targets is not None: loss = F.cross_entropy( logits.view(-1, logits.size(-1)), targets.view(-1) ) return logits, loss def foo(self, memo=None, prefix="", remove_duplicate=False): for mn, m in self.named_modules( memo=memo, prefix=prefix, remove_duplicate=remove_duplicate ): for pn, p in self.named_parameters(): fpn = "%s.%s" % (mn, pn) if mn else pn self.names.append(fpn) # Test plain recurse model_a = FakeGPT() model_a.foo() a_names = model_a.names model_b = FakeGPT() opt_model_b = torch._dynamo.optimize("eager", nopython=True)(model_b) opt_model_b.foo() self.assertEqual(a_names, model_b.names) # Test with prefix model_a = FakeGPT() model_a.foo(prefix="abc") a_names = model_a.names model_b = FakeGPT() opt_model_b = torch._dynamo.optimize("eager", nopython=True)(model_b) opt_model_b.foo(prefix="abc") self.assertEqual(a_names, model_b.names) def test_numpy_variable_isinstance(self): def fn(x, m): if isinstance(m, np.ndarray): return x + 1 else: return x - 1 x = torch.tensor([2.3]) m = np.array([1, 2, 3]) ref = fn(x, m) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) res = opt_fn(x, m) self.assertEqual(ref, res) def test_tensor_dot_grad_no_graph_break(self): def fn(a, b): y = 3 * a**3 - b**2 y.backward(gradient=torch.tensor([1.0, 1.0])) b.grad.zero_() return a.grad, b.grad a = torch.tensor([2.0, 3.0], requires_grad=True) b = torch.tensor([6.0, 4.0], requires_grad=True) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) _, b_grad = opt_fn(a, b) self.assertTrue(same(b_grad, torch.tensor([0.0, 0.0]))) self.assertEqual(cnts.frame_count, 2) def test_torch_nn_parameter_isinstance(self): def fn(x): a = torch.nn.Parameter(torch.rand(2, 3)) if isinstance(a, torch.Tensor): return x + 1 else: return x - 1 x = torch.tensor([2.5]) ref = fn(x) opt_fn = torch._dynamo.optimize("eager")(fn) res = opt_fn(x) self.assertEqual(ref, res) def test_change_backends(self): @torch._dynamo.optimize("eager", nopython=True) def fn1(): return x + 1 @torch._dynamo.optimize("ts") def fn2(): return x + 2 @torch._dynamo.optimize("eager", nopython=False) def fn3(): return x + 1 x = torch.tensor([3, 5]) fn1() fn1() fn3() self.assertRaises(torch._dynamo.exc.ResetRequired, fn2) fn1() torch._dynamo.reset() fn2() fn2() self.assertRaises(torch._dynamo.exc.ResetRequired, fn1) self.assertRaises(torch._dynamo.exc.ResetRequired, fn3) fn2() def test_dynamo_min_operator_with_shape(self): @torch._dynamo.optimize("eager", nopython=True) def f(x, a): return min(x.shape[0], a) result = f(torch.ones(6), 3) self.assertEqual(result, 3) @patch.object(torch._dynamo.config, "dynamic_shapes", True) def test_onnx_shape_as_tensor(self): @torch._dynamo.optimize("eager", nopython=True) def f(x): return 1 + torch._shape_as_tensor(x)[0] gm, _ = torch._dynamo.export(f, torch.ones(6)) input_one_dim = torch.ones(6) input_two_dims = torch.ones(7, 4) self.assertEqual(f(input_one_dim), 7) self.assertEqual(f(input_two_dims), 8) self.assertEqual(f(input_two_dims), 8) @torch._dynamo.optimize("eager", nopython=True) def f_onnx(x): return 1 + torch.onnx.operators.shape_as_tensor(x)[0] self.assertEqual(f_onnx(input_one_dim), 7) self.assertEqual(f_onnx(input_two_dims), 8) self.assertEqual(f_onnx(input_two_dims), 8) def test_cond(self): from functorch.experimental.cond import cond def true_fn(x): return x.sin() def false_fn(x): return x.cos() def f(pred, x): return cond(pred, true_fn, false_fn, [x]) opt_fn = torch._dynamo.optimize("eager")(f) a = opt_fn(torch.tensor(False), torch.tensor([0.25, 0.25])) self.assertTrue(same(torch.cos(torch.tensor([0.25, 0.25])), a)) b = opt_fn(torch.tensor(True), torch.tensor([0.25, 0.25])) self.assertTrue(same(torch.sin(torch.tensor([0.25, 0.25])), b)) def test_cond_nested(self): from functorch.experimental.cond import cond def true_fn_nested(x): return x * 10 def false_fn_nested(x): return x * -1 def true_fn(pred2, x): return x.sin() def false_fn(pred2, x): return x + cond(pred2, true_fn_nested, false_fn_nested, [x]) def f(pred, pred2, x): return cond(pred, true_fn, false_fn, [pred2, x]) cc = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cc)(f) true_true_sin = opt_fn( torch.tensor(True), torch.tensor(True), torch.tensor([0.25, 0.25]) ) self.assertTrue(same(torch.sin(torch.tensor([0.25, 0.25])), true_true_sin)) true_false_sin = opt_fn( torch.tensor(True), torch.tensor(False), torch.tensor([0.25, 0.25]) ) self.assertTrue(same(torch.sin(torch.tensor([0.25, 0.25])), true_false_sin)) false_true_sum_mult = opt_fn( torch.tensor(False), torch.tensor(True), torch.tensor([0.25, 0.25]) ) self.assertTrue( same(torch.tensor([2.75, 2.75]), false_true_sum_mult) ) # * 10 then add x false_false_sum_neg = opt_fn( torch.tensor(False), torch.tensor(False), torch.tensor([0.25, 0.25]) ) self.assertTrue( same(torch.tensor([0.0, 0.0]), false_false_sum_neg) ) # * -1 then add x self.assertTrue(cc.frame_count, 2) @patch.object(torch._dynamo.config, "fake_tensor_propagation", False) def test_cond_nested_fake_tensor_off(self): from functorch.experimental.cond import cond def true_fn_nested(x): return x * 10 def false_fn_nested(x): return x * -1 def true_fn(pred2, x): return x.sin() def false_fn(pred2, x): return x + cond(pred2, true_fn_nested, false_fn_nested, [x]) def f(pred, pred2, x): return cond(pred, true_fn, false_fn, [pred2, x]) cc = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cc)(f) true_true_sin = opt_fn( torch.tensor(True), torch.tensor(True), torch.tensor([0.25, 0.25]) ) self.assertTrue(same(torch.sin(torch.tensor([0.25, 0.25])), true_true_sin)) true_false_sin = opt_fn( torch.tensor(True), torch.tensor(False), torch.tensor([0.25, 0.25]) ) self.assertTrue(same(torch.sin(torch.tensor([0.25, 0.25])), true_false_sin)) false_true_sum_mult = opt_fn( torch.tensor(False), torch.tensor(True), torch.tensor([0.25, 0.25]) ) self.assertTrue( same(torch.tensor([2.75, 2.75]), false_true_sum_mult) ) # * 10 then add x false_false_sum_neg = opt_fn( torch.tensor(False), torch.tensor(False), torch.tensor([0.25, 0.25]) ) self.assertTrue( same(torch.tensor([0.0, 0.0]), false_false_sum_neg) ) # * -1 then add x self.assertTrue(cc.frame_count, 1) @patch.object(torch._dynamo.config, "fake_tensor_propagation", False) def test_cond_export(self): from functorch.experimental.cond import cond def true_fn_nested(x): return x * 10 def false_fn_nested(x): return x * -1 def true_fn(pred2, x): return x.sin() def false_fn(pred2, x): return x + cond(pred2, true_fn_nested, false_fn_nested, [x]) def f(pred, pred2, x): return cond(pred, true_fn, false_fn, [pred2, x]) graph, guard = torch._dynamo.export( f, torch.tensor(False), torch.tensor(True), torch.tensor([0.25, 0.25]) ) true_true_sin = graph( torch.tensor(True), torch.tensor(True), torch.tensor([0.25, 0.25]) ) self.assertTrue(same(torch.sin(torch.tensor([0.25, 0.25])), true_true_sin)) true_false_sin = graph( torch.tensor(True), torch.tensor(False), torch.tensor([0.25, 0.25]) ) self.assertTrue(same(torch.sin(torch.tensor([0.25, 0.25])), true_false_sin)) false_true_sum_mult = graph( torch.tensor(False), torch.tensor(True), torch.tensor([0.25, 0.25]) ) self.assertTrue( same(torch.tensor([2.75, 2.75]), false_true_sum_mult) ) # * 10 then add x false_false_sum_neg = graph( torch.tensor(False), torch.tensor(False), torch.tensor([0.25, 0.25]) ) self.assertTrue( same(torch.tensor([0.0, 0.0]), false_false_sum_neg) ) # * -1 then add x @patch.object(torch._dynamo.config, "fake_tensor_propagation", False) def test_cond_export_single_arg(self): from functorch.experimental.cond import cond def true_fn(x): return x def false_fn(x): return x.sin() def f(pred, x): return cond(pred, true_fn, false_fn, [x]) graph, guard = torch._dynamo.export( f, torch.tensor(False), torch.tensor([0.25, 0.25]) ) true_mirror = graph(torch.tensor(True), torch.tensor([0.25, 0.25])) self.assertTrue(same(torch.tensor([0.25, 0.25]), true_mirror)) true_mirror_2 = graph(torch.tensor(True), torch.tensor([0.33, 0.33, 0.33])) self.assertTrue(same(torch.tensor([0.33, 0.33, 0.33]), true_mirror_2)) false_sin = graph(torch.tensor(False), torch.tensor([0.5, 0.5])) self.assertTrue(same(torch.sin(torch.tensor([0.5, 0.5])), false_sin)) def test_disable_optimize(self): cnt = torch._dynamo.testing.CompileCounter() @torch._dynamo.optimize(cnt, disable=True) def f1(x): return x + 1 f1(torch.ones(6)) self.assertEqual(cnt.frame_count, 0) @torch._dynamo.optimize(cnt, disable=True) def f2(x): return x + 1 f2(torch.ones(6)) self.assertEqual(cnt.frame_count, 0) with patch.dict(os.environ, {"TORCHDYNAMO_DISABLE": "1"}): @torch._dynamo.optimize(cnt) def f3(x): return x + 1 f3(torch.ones(6)) self.assertEqual(cnt.frame_count, 0) def test_config_log_level(self): @torch._dynamo.optimize("eager") def fn(a, b): return a + b with self.assertLogs(logger="torch._dynamo", level=logging.DEBUG) as log: torch._dynamo.config.log_level = logging.DEBUG fn(torch.randn(10), torch.randn(10)) cur_len = len(log) self.assertGreater(cur_len, 0) torch._dynamo.config.log_level = logging.WARNING fn(torch.randn(10), torch.randn(10)) self.assertEqual(cur_len, len(log)) @patch.object(torch._dynamo.config, "print_graph_breaks", True) def test_duplicate_graph_break_warning(self): @torch._dynamo.optimize("eager") def f1(a, b): f2(a, b) def f2(a, b): c = a + b print("break") return a + b + c @torch._dynamo.optimize("eager") def g1(a, b): g2(a, b) def g2(a, b): c = a + b print("break") return a + b + c def count_graph_break_msgs(msgs): return sum(msg.find("Graph break") != -1 for msg in msgs) with self.assertLogs(logger="torch._dynamo", level=logging.WARNING) as log: torch._dynamo.config.verbose = True f1(torch.randn(10), torch.randn(10)) self.assertGreater(count_graph_break_msgs(log.output), 1) with self.assertLogs(logger="torch._dynamo", level=logging.WARNING) as log: torch._dynamo.config.verbose = False g1(torch.randn(10), torch.randn(10)) self.assertEqual(count_graph_break_msgs(log.output), 1) def test_inplace_param_update(self): def fn(param, y): prev_grad = torch.is_grad_enabled() try: torch.set_grad_enabled(False) torch.set_grad_enabled(True) torch.set_grad_enabled(False) param.add_(y) finally: torch.set_grad_enabled(prev_grad) y = torch.randn(4) x = torch.nn.Parameter(torch.randn(4)) fn(x, y) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts, nopython=True)(fn) opt_fn(x, y) self.assertEqual(cnts.frame_count, 1) self.assertEqual(cnts.op_count, 5) @unittest.skipIf(not torch.cuda.is_available(), "requires cuda") def test_autocast(self): if not torch.cuda.is_bf16_supported(): raise unittest.SkipTest("requires bf16") class MyModule(torch.nn.Module): def forward(self, x): a_float32 = torch.rand((8, 8), device="cuda") b_float32 = torch.rand((8, 8), device="cuda") d_float32 = torch.rand((8, 8), device="cuda") with torch.autocast(device_type="cuda", dtype=torch.bfloat16): e_float16 = torch.mm(a_float32, b_float32) f_float16 = torch.mm(d_float32, e_float16) return f_float16 module = MyModule() real = module(torch.tensor([0.5])) real_device = real.device real_dtype = real.dtype graph, guards = torch._dynamo.export(module, torch.tensor([[0.0, 0], [0, 0]])) exported = graph(torch.tensor([0.5])) self.assertEqual(exported.device, real_device) self.assertEqual(exported.dtype, real_dtype) self.assertEqual(exported.device.type, "cuda") self.assertEqual(exported.device.index, 0) self.assertEqual(exported.dtype, torch.bfloat16) def test_autocast_cpu(self): class MyModule(torch.nn.Module): def forward(self, x): a_float32 = torch.rand((8, 8), device="cpu") b_float32 = torch.rand((8, 8), device="cpu") d_float32 = torch.rand((8, 8), device="cpu") with torch.autocast(device_type="cpu", dtype=torch.bfloat16): e_float16 = torch.mm(a_float32, b_float32) f_float16 = torch.mm(d_float32, e_float16) return f_float16 module = MyModule() real = module(torch.tensor([0.5])) real_device = real.device real_dtype = real.dtype graph, guards = torch._dynamo.export(module, torch.tensor([[0.0, 0], [0, 0]])) exported = graph(torch.tensor([0.5])) self.assertEqual(exported.device, real_device) self.assertEqual(exported.dtype, real_dtype) self.assertEqual(exported.device.type, "cpu") self.assertEqual(exported.dtype, torch.bfloat16) @unittest.skipIf(not torch.cuda.is_available(), "requires cuda") def test_autocast_float64(self): class MyModule(torch.nn.Module): def forward(self, x): a_float32 = torch.rand((8, 8), device="cuda") b_float32 = torch.rand((8, 8), device="cuda") d_float32 = torch.rand((8, 8), device="cuda") with torch.autocast(device_type="cuda", dtype=torch.float64): e_float64 = torch.mm(a_float32, b_float32) f_float64 = torch.mm(d_float32, e_float64) return f_float64 module = MyModule() real = module(torch.tensor([0.5])) real_device = real.device real_dtype = real.dtype graph, guards = torch._dynamo.export(module, torch.tensor([[0.0, 0], [0, 0]])) exported = graph(torch.tensor([0.5])) self.assertEqual(exported.device, real_device) self.assertEqual(exported.dtype, real_dtype) self.assertEqual(exported.device.index, 0) self.assertEqual(exported.dtype, torch.float64) @unittest.skipIf(not torch.cuda.is_available(), "requires cuda") def test_autocast_device(self): class MyModule(torch.nn.Module): def forward(self, x): a_float32 = torch.rand((8, 8), device="cuda") b_float32 = torch.rand((8, 8), device="cuda") d_float32 = torch.rand((8, 8), device="cuda") with torch.autocast(device_type="cuda"): e_float64 = torch.mm(a_float32, b_float32) f_float64 = torch.mm(d_float32, e_float64) return f_float64 module = MyModule() real = module(torch.tensor([0.5])) real_device = real.device real_dtype = real.dtype graph, guards = torch._dynamo.export(module, torch.tensor([[0.0, 0], [0, 0]])) exported = graph(torch.tensor([0.5])) self.assertEqual(exported.device, real_device) self.assertEqual(exported.dtype, real_dtype) self.assertEqual(exported.device.index, 0) self.assertEqual(exported.dtype, torch.torch.float16) def test_generate_tensor_from_list_of_numpy_primitive_type(self): # Test sth like torch.LongTensor(list(np.int64, np.int64, ...)) def fn(): x = np.array([1, 2, 3, 4, 5, 6], dtype=np.int64) y = [x[0], x[2], x[4]] z = torch.LongTensor(y) return z ref = fn() opt_fn = torch._dynamo.optimize("eager")(fn) res = opt_fn() self.assertTrue(same(ref, res)) def test_autograd_function_equivalence(self): m1 = Module1() @torch._dynamo.optimize("eager", nopython=True) def f1(): return m1(torch.ones(2, 3)) self.assertTrue(torch.allclose(f1(), torch.tensor([2.0]))) m2 = Module2() @torch._dynamo.optimize("eager", nopython=True) def f2(): return m2(torch.ones(2, 3)) self.assertTrue(torch.allclose(f2(), torch.tensor([2.0]))) def test_object_classmethod(self): class C: @classmethod def fn(cls, x): return x + x @torch._dynamo.optimize("eager", nopython=True) def f(): return C().fn(torch.ones(2, 3)) self.assertTrue(torch.allclose(f(), torch.tensor([2.0]))) def test_object_staticmethod(self): class C: @staticmethod def fn(x): return x + x @torch._dynamo.optimize("eager", nopython=True) def f(): return C().fn(torch.ones(2, 3)) self.assertTrue(torch.allclose(f(), torch.tensor([2.0]))) def test_user_function_variable_supports_enum_argument(self): class Foo(enum.Enum): FOO = 0 BAR = 1 def gn(x, y=Foo.FOO): if y is Foo.FOO: return x else: return x + 1 def fn(x): return gn(x) x = torch.randn(2, 3) ref = fn(x) opt_fn = torch._dynamo.optimize("eager", nopython=True)(fn) res = opt_fn(x) self.assertTrue(torch.allclose(ref, res)) def test_repro_graph_breaks_in__get_item_by_idx(self): class Mod(torch.nn.Module): def __init__(self): super().__init__() self.mod = torch.nn.Sequential( torch.nn.Linear(3, 3), torch.nn.Linear(3, 3) ) def forward(self, x): return self.mod[0](x) m = Mod() graph, _ = torch._dynamo.export(m, torch.randn(3, 3)) class CustomFunc(torch.autograd.Function): @staticmethod def forward(ctx, foo): return foo + foo @staticmethod def backward(ctx, grad_output): return grad_output class Module1(torch.nn.Module): def __init__(self): super().__init__() def forward(self, foo): return CustomFunc().apply(foo) class Module2(torch.nn.Module): def __init__(self): super().__init__() self.fn = CustomFunc.apply def forward(self, foo): return self.fn(foo) class TestTracer(JitTestCase): def test_jit_save(self): def fn(): class Foo(torch.nn.Module): def __init__(self): super(Foo, self).__init__() self.a = 3 @torch.jit.export def __getstate__(self): return (3, self.training) @torch.jit.export def __setstate__(self, state): self.a = state[0] self.training = state[1] def forward(self, x): return x + self.a f = Foo() return torch.jit.trace(f, (torch.rand(3, 4),)) fn() opt_fn = torch._dynamo.optimize("eager")(fn) opt_fn() if __name__ == "__main__": from torch._dynamo.test_case import run_tests run_tests()