"""This module exists since the `torch.testing` exposed a lot of stuff that shouldn't have been public. Although this was never documented anywhere, some other internal FB projects as well as downstream OSS projects might use this. Thus, we don't internalize without warning, but still go through a deprecation cycle. """ import functools import warnings from typing import Any, Callable, Optional, Tuple import torch __all__ = [ "rand", "randn", "assert_allclose", ] def warn_deprecated(instructions: str) -> Callable: def outer_wrapper(fn: Callable) -> Callable: msg = ( f"torch.testing.{fn.__name__} is deprecated and will be removed in a future release. " f"{instructions.strip()}" ) @functools.wraps(fn) def inner_wrapper(*args: Any, **kwargs: Any) -> Any: warnings.warn(msg, FutureWarning) return fn(*args, **kwargs) return inner_wrapper return outer_wrapper rand = warn_deprecated("Use torch.rand instead.")(torch.rand) randn = warn_deprecated("Use torch.randn instead.")(torch.randn) _DTYPE_PRECISIONS = { torch.float16: (1e-3, 1e-3), torch.float32: (1e-4, 1e-5), torch.float64: (1e-5, 1e-8), } def _get_default_rtol_and_atol(actual: torch.Tensor, expected: torch.Tensor) -> Tuple[float, float]: actual_rtol, actual_atol = _DTYPE_PRECISIONS.get(actual.dtype, (0.0, 0.0)) expected_rtol, expected_atol = _DTYPE_PRECISIONS.get(expected.dtype, (0.0, 0.0)) return max(actual_rtol, expected_rtol), max(actual_atol, expected_atol) # TODO: include the deprecation as soon as torch.testing.assert_close is stable # @warn_deprecated( # "Use torch.testing.assert_close instead. " # "For detailed upgrade instructions see https://github.com/pytorch/pytorch/issues/61844." # ) def assert_allclose( actual: Any, expected: Any, rtol: Optional[float] = None, atol: Optional[float] = None, equal_nan: bool = True, msg: str = "", ) -> None: if not isinstance(actual, torch.Tensor): actual = torch.tensor(actual) if not isinstance(expected, torch.Tensor): expected = torch.tensor(expected, dtype=actual.dtype) if rtol is None and atol is None: rtol, atol = _get_default_rtol_and_atol(actual, expected) torch.testing.assert_close( actual, expected, rtol=rtol, atol=atol, equal_nan=equal_nan, check_device=True, check_dtype=False, check_stride=False, check_is_coalesced=False, msg=msg or None, )