from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import unittest from caffe2.proto import caffe2_pb2 from caffe2.python import core, workspace, data_parallel_model from caffe2.python.test_util import TestCase @unittest.skipIf(not workspace.has_gpu_support, "No gpu support.") @unittest.skipIf(workspace.NumCudaDevices() < 2, "Need at least 2 GPUs.") class GPUDataParallelModelTest(TestCase): def test(self): gpu_devices = [0, 1] # gpu ids perfect_model = np.array([2, 6, 5, 0, 1]).astype(np.float32) np.random.seed(123) data = np.random.randint( 2, size=(50, perfect_model.size) ).astype(np.float32) label = np.dot(data, perfect_model)[:, np.newaxis] model = data_parallel_model.GPUDataParallelModel( gpu_devices, order="NHWC", name="fake") fc = model.FC("data", "fc", perfect_model.size, 1, ("ConstantFill", {}), ("ConstantFill", {}), axis=0) sq = model.SquaredL2Distance([fc, "label"], "sq") loss = model.AveragedLoss(sq, "loss") model.AddGradientOperators([loss]) model.SGD(-0.1) model.RunAllOnGPU() for gpu_id in gpu_devices: with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, gpu_id)): workspace.FeedBlob( "gpu_{}/data".format(gpu_id), data[0]) workspace.FeedBlob( "gpu_{}/label".format(gpu_id), label[0]) workspace.RunNetOnce(model.param_init_net) workspace.CreateNet(model.net) for i in range(2000): idx = np.random.randint(data.shape[0]) for gpu_id in gpu_devices: device = core.DeviceOption(caffe2_pb2.CUDA, gpu_id) with core.DeviceScope(device): workspace.FeedBlob( "gpu_{}/data".format(gpu_id), data[idx]) workspace.FeedBlob( "gpu_{}/label".format(gpu_id), label[idx]) workspace.RunNet(model.net) for gpu_id in gpu_devices: np.testing.assert_allclose( perfect_model[np.newaxis, :], workspace.FetchBlob("gpu_{}/fc_w".format(gpu_id)), atol=1e-2)