## @package data_workers # Module caffe2.python.data_workers ''' This module provides a python-land multithreaded data input mechanism for Caffe2 nets. Basic usage is as follows: coordinator = data_workers.init_data_input_workers( net, ["data", "label"], my_fetch_fun, batch_size=32, input_source_name="train", dont_rebatch=False ) ... coordinator.start() First argument is the Caffe2 net (or model helper), and second argument is list of input blobs that are to be fed. Argument 'input_source_name' is used to distinguish different sources of data, such as train or test data. This is to ensure the data does not get mixed up, although two nets would share blobs. To do the actual data loading, one defines a "fetcher function" that has call signature my_fetch_fun(worker_id, batch_size) Optionally, one can define a "init function" that is called once before threads start, and has call signature: my_init_fun(data_coordinator, global_coordinator) If dont_rebatch is set to True, the data input is not batched into equal sized chunks but data directly provided by fetchers is used. 'batch_columns' can be used to specify which dimension is the batch dimension, for each of the inputs. Default is 0 for all iputs. 'timeout' is the timeout in seconds after which if no data is available, the net will fail (default 600s = 10 mins). This function returns a list of numpy arrays corresponding to the different input blobs. In the example above, it would return two arrays, one for the data blob and another for the labels. These arrays can have arbitrary number of elements (i.e they do not need to match the batch size). The batch size is provided for the function as a hint only. For example, fetcher function could download images from a remote service or load random images from a directory on a file system. For a dummy example, see the data_workers_test unit test. Note that for data_parallel_models, init_data_input_workers will be called for each GPU. Note that the 'coordinator' returned by the function is same each time. ''' import queue as Queue from itertools import chain import logging import threading import numpy as np import time from caffe2.python import workspace, core, scope, utils from caffe2.proto import caffe2_pb2 from caffe2.python.parallel_workers import Metrics, State, \ WorkerCoordinator, GlobalWorkerCoordinator, Worker, run_worker log = logging.getLogger("data_workers") log.setLevel(logging.INFO) LOG_INT_SECS = 60 def get_worker_ids(num_workers): return list(range(0, num_workers)) def init_data_input_workers( net, input_blob_names, fetch_fun, batch_size, num_worker_threads=2, input_source_name="train", max_buffered_batches=800, init_fun=None, external_loggers=None, dont_rebatch=False, batch_columns=None, timeout=600 ): global global_coordinator device_option = scope.CurrentDeviceScope() if (device_option is None): device_option = caffe2_pb2.DeviceOption(device_type=caffe2_pb2.CPU) metrics = Metrics(external_loggers) batch_feeder = BatchFeeder( net, input_blob_names, batch_size, device_option, scope.CurrentNameScope(), input_source_name, global_coordinator.get_queue(input_source_name, max_buffered_batches), metrics, dont_rebatch, batch_columns, timeout=timeout ) # Launch fetch worker threads worker_ids = [ global_coordinator.get_new_worker_id() for i in range(num_worker_threads) ] # Create coordinator object coordinator = WorkerCoordinator( input_source_name, worker_ids, init_fun, batch_feeder) workers = [ threading.Thread( target=run_worker, name="data_workers fetcher id {}".format(worker_id), args=[coordinator, DataWorker(coordinator, worker_id, fetch_fun, metrics, batch_size, batch_feeder)], ) for worker_id in worker_ids ] workers.append(threading.Thread( target=enqueuer, name="Enqueuer {} {}".format(input_source_name, scope.CurrentNameScope()), args=[coordinator, batch_feeder])) coordinator._workers = workers global_coordinator.add(coordinator) return global_coordinator class BatchFeeder(State): def __init__(self, net, input_blob_names, batch_size, device_option, namescope, input_source_name, queue, metrics, dont_rebatch, batch_columns, timeout=600): self._counter = 0 self._input_blob_names = input_blob_names self._batch_size = batch_size self._internal_queue = queue self._queues = [] self._device_option = device_option self._namescope = namescope self._timeout = timeout self._input_source_name = input_source_name self._c2_queue_capacity = 4 self._create_caffe2_queues(net) self._create_caffe2_ops(net) self._inputs = 0 self._prev_seconds = 0 self._last_warning = time.time() self._dont_rebatch = dont_rebatch self._init_scratch() self._metrics = metrics if batch_columns is None: batch_columns = [0 for _ in input_blob_names] self._batch_columns = batch_columns def start(self): self._inputs = 0 self._prev_seconds = time.time() def stop(self): try: for q in self._queues: workspace.RunOperatorOnce( core.CreateOperator("CloseBlobsQueue", [q], []) ) finally: self._log_inputs_per_interval(0, force=True) def cleanup(self): utils.ResetBlobs(self._scratch_blob.values()) utils.ResetBlobs(self._scratch_status.values()) def _get(self, data_input_coordinator): start_time = time.time() last_warning = time.time() while data_input_coordinator.is_active(): try: return self._internal_queue.get(block=True, timeout=0.5) except Queue.Empty: if time.time() - last_warning > 10.0: log.warning("** Data input is slow: (still) no data in {} secs.".format( time.time() - start_time)) last_warning = time.time() continue return None def _validate_chunk(self, chunk): if chunk is None: log.warning("Fetcher function returned None") return False assert len(chunk) == len(self._input_blob_names), \ "Expecting data blob for each input" for d in chunk: assert isinstance(d, np.ndarray), \ "Fetcher function must return a numpy array" if not self._dont_rebatch: j = 1 for d in chunk[1:]: assert d.shape[self._batch_columns[j]] == \ chunk[0].shape[self._batch_columns[0]], \ "Each returned input must have equal number of samples" j += 1 if len(chunk) == 0: log.warning("Worker provided zero length input") return False return True def put(self, chunk, data_input_coordinator): if not self._validate_chunk(chunk): return while data_input_coordinator.is_active(): try: qsize = self._internal_queue.qsize() if qsize < 2 and (time.time() - self._last_warning) > LOG_INT_SECS: log.warning("Warning, data loading lagging behind: " + "queue size={}, name={}".format(qsize, self._input_source_name)) self._last_warning = time.time() self._counter += 1 self._internal_queue.put(chunk, block=True, timeout=0.5) self._log_inputs_per_interval(chunk[0].shape[0]) return except Queue.Full: log.debug("Queue full: stalling fetchers...") continue def _enqueue_batch_direct(self, data_input_coordinator): data = self._get(data_input_coordinator) if data is None: return if data_input_coordinator.is_active(): for b, q, c in zip(self._input_blob_names, self._queues, data): self._enqueue(b, q, c) def _enqueue_batch(self, data_input_coordinator): ''' This pulls data from the python-side queue and collects them into batch-sized pieces, unless dont_rebatch is set to true. ''' if self._dont_rebatch: self._enqueue_batch_direct(data_input_coordinator) return cur_batch = [np.array([]) for d in self._input_blob_names] first_batch_col = self._batch_columns[0] # Collect data until we have a full batch size while ( cur_batch[0].shape[0] == 0 or cur_batch[0].shape[first_batch_col] < self._batch_size ) and data_input_coordinator.is_active(): chunk = self._get(data_input_coordinator) if chunk is None: continue for j, chunk_elem in enumerate(chunk): if cur_batch[j].shape[0] == 0: cur_batch[j] = chunk_elem.copy() else: cur_batch[j] = np.append( cur_batch[j], chunk_elem, axis=self._batch_columns[j] ) start_time = time.time() try: # Return data over the batch size back to queue if cur_batch[0].shape[0] > 0 and cur_batch[0].shape[ first_batch_col ] > self._batch_size: leftover = [] trimmed_batch = [] for j, b in enumerate(cur_batch): [c, l] = np.split( b, [self._batch_size], axis=self._batch_columns[j] ) leftover.append(l) trimmed_batch.append(c) cur_batch = trimmed_batch try: self._internal_queue.put(leftover, block=False) except Queue.Full: pass assert cur_batch[0].shape[first_batch_col] == self._batch_size if data_input_coordinator.is_active(): for b, q, c in zip( self._input_blob_names, self._queues, cur_batch ): self._enqueue(b, q, c) finally: self._metrics.put_metric('enqueue_time', time.time() - start_time) def _init_scratch(self): self._scratch_blob = {} self._scratch_status = {} for blob_name in self._input_blob_names: scratch_name = self._namescope + blob_name + \ "_scratch_" + self._input_source_name self._scratch_blob[blob_name] = core.BlobReference(scratch_name) self._scratch_status[blob_name] = core.BlobReference( scratch_name + "_status" ) # Feed empty arrays to the scratch blobs here, so that there won't be # race conditions when calling FeedBlob (which calls wworkspace # CreateBlob()) from enqueue threads for b in chain( self._scratch_blob.values(), self._scratch_status.values() ): workspace.FeedBlob( b, np.array([]).astype(np.float32), device_option=self._device_option, ) def _enqueue(self, blob_name, queue, data_arr): ''' Enqueue the correctly sized batch arrays to Caffe2's queue. ''' workspace.FeedBlob( self._scratch_blob[blob_name], data_arr, device_option=self._device_option ) op = core.CreateOperator( "SafeEnqueueBlobs", [queue, self._scratch_blob[blob_name]], [self._scratch_blob[blob_name], self._scratch_status[blob_name]], device_option=self._device_option ) workspace.RunOperatorOnce(op) def _create_caffe2_queues(self, net): ''' Creates queues on caffe2 side ''' def create_queue(queue_name, num_blobs, capacity): workspace.RunOperatorOnce( core.CreateOperator( "CreateBlobsQueue", [], [queue_name], num_blobs=1, capacity=capacity)) return core.ScopedBlobReference(queue_name) for blob_name in self._input_blob_names: qname = blob_name + "_c2queue" + "_" + self._input_source_name q = create_queue( qname, num_blobs=1, capacity=self._c2_queue_capacity ) self._queues.append(q) def _create_caffe2_ops(self, net): ''' Creates dequeue-ops on caffe2 side ''' for q, blob_name in zip(self._queues, self._input_blob_names): # Add operator to the Caffe2 network to dequeue net.DequeueBlobs(q, blob_name, timeout_secs=float(self._timeout)) def _log_inputs_per_interval(self, inputs, force=False): self._inputs += inputs current_seconds = time.time() delta_seconds = current_seconds - self._prev_seconds if delta_seconds >= LOG_INT_SECS or force: inputs_per_sec = int(self._inputs / delta_seconds) qsize = self._internal_queue.qsize() log.info("{}/{}: {} inputs/sec".format( self._input_source_name, self._namescope, inputs_per_sec, )) log.info("-- queue: {} batches".format(qsize)) # log and reset perf metrics self._metrics.put_metric( 'inputs_per_sec', inputs_per_sec, False) self._metrics.put_metric('queue_size', qsize, False) self._metrics.put_metric( 'time_elapsed', delta_seconds, False) self._metrics.log_metrics() self._metrics.reset_metrics() self._inputs = 0 self._prev_seconds = current_seconds class GlobalCoordinator(GlobalWorkerCoordinator): def __init__(self): GlobalWorkerCoordinator.__init__(self) self._queues = {} def get_queue(self, queue_name, max_buffered_batches): assert isinstance(max_buffered_batches, int) if queue_name not in self._queues: self._queues[queue_name] = Queue.Queue(maxsize=max_buffered_batches) return self._queues[queue_name] def reset_data_input(self, namescope, name, net, batch_size): log.info("Reset data input {}, batch size {}: ".format(name, batch_size)) for c in self._coordinators: if c._worker_name == name and c._state._namescope == namescope: c._state._batch_size = batch_size c._state._create_caffe2_ops(net) class DataWorker(Worker): def __init__( self, coordinator, worker_id, worker_fun, metrics, batch_size, batch_feeder ): Worker.__init__(self, coordinator, worker_id, worker_fun=worker_fun, metrics=metrics) self._batch_size = batch_size self._batch_feeder = batch_feeder def run(self): input_data = self._worker_fun(self._worker_id, self._batch_size) self._batch_feeder.put(input_data, self._coordinator) def finish(self): self._metrics.put_metric( 'fetcher_time', time.time() - self._start_time) global_coordinator = GlobalCoordinator() def enqueuer(coordinator, batch_feeder): while coordinator.is_active(): batch_feeder._enqueue_batch(coordinator)