import argparse import numpy as np from caffe2.python import core, workspace def benchmark_concat(num_inputs, input_dim, axis, add_axis, iterations): input_names = [f"input{i}" for i in range(num_inputs)] for n in input_names: workspace.FeedBlob(n, np.random.randn(*input_dim).astype(np.float32)) net = core.Net("benchmark_net") net.Concat(input_names, ["output", "split_info"], axis=axis, add_axis=add_axis) workspace.CreateNet(net) runtimes = workspace.BenchmarkNet(net.Name(), 1, iterations, True) print(f"{num_inputs * np.prod(input_dim) * 4 / runtimes[1] / 1e6} GB/s") if __name__ == "__main__": parser = argparse.ArgumentParser(description="minimal benchmark for concat.") parser.add_argument("--num_inputs", type=int, default=2) parser.add_argument("--input_dim", nargs="+", type=int, required=True) parser.add_argument("--axis", type=int, default=-1) parser.add_argument("--add_axis", type=int, default=0) parser.add_argument("--iterations", type=int, default=64) args, extra_args = parser.parse_known_args() core.GlobalInit(["python"] + extra_args) benchmark_concat( args.num_inputs, args.input_dim, args.axis, args.add_axis, args.iterations )