# Owner(s): ["oncall: distributed"] import sys from contextlib import suppress from copy import deepcopy from enum import Enum from math import inf from typing import Union from unittest import mock import torch import torch.distributed as dist import torch.nn as nn from torch.distributed.fsdp import CPUOffload, FullyShardedDataParallel from torch.distributed.fsdp.fully_sharded_data_parallel import TrainingState_ from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler from torch.distributed.fsdp.wrap import wrap from torch.testing._internal.common_distributed import ( TEST_SKIPS, MultiProcessTestCase, ) from torch.testing._internal.common_utils import FILE_SCHEMA, get_cycles_per_ms class FSDPInitMode(Enum): # Move model to CUDA before wrap CUDA_BEFORE = 1 # Move model to CUDA after wrap CUDA_AFTER = 2 # Don't move model to CUDA at all. CUDA_NEVER = 3 def _validate(model, process_group, assert_fn): module_states = [param.detach().cpu() for param in model.parameters()] module_states.extend([buffer.detach().cpu() for buffer in model.buffers()]) world_size = dist.get_world_size(process_group) olist = [None for _ in range(world_size)] dist.all_gather_object(olist, module_states, group=process_group) rank0_states = olist[0] for state in olist[1:]: for p1, p2 in zip(rank0_states, state): assert_fn(p1, p2) def _zero_model(fsdp_model: FullyShardedDataParallel): with FullyShardedDataParallel.summon_full_params(fsdp_model): for param in fsdp_model.parameters(): with torch.no_grad(): param.zero_() def _get_state_dict(model, cpu_offload=False, half=False): if not cpu_offload: model = model.cuda() if half: model.half() return model.state_dict() def subtest_name(test_name_mapping, *args): return '_'.join( [test_name_mapping[str(s)] if s is not None else "none" for s in args] ) # get full params of a model recursively. Note that if CPU offloading, it will # also automatically move the parameters to GPU, due to _rebuild_full_params # call. def get_full_params(model, recurse=True): with FullyShardedDataParallel.summon_full_params(model, recurse=recurse): return deepcopy(list(model.parameters())) def _maybe_cuda(model, move_to_cuda): return model.cuda() if move_to_cuda else model def _maybe_wrap_fsdp(model, wrap_fsdp, *args, **kwargs): return ( model if not wrap_fsdp else FullyShardedDataParallel(model, *args, **kwargs) ) class DummyProcessGroup: def __init__(self, rank: int, size: int): self._rank = rank self._size = size def rank(self) -> int: return self._rank def size(self) -> int: return self._size def allreduce(self, *args, **kwargs): dist_wait = mock.Mock() def get_future(): future = torch.futures.Future() future.set_result(1) return future dist_wait.get_future = get_future return dist_wait class DeterministicModel(torch.nn.Module): def __init__(self, wrap_fsdp, cpu_offload=CPUOffload(offload_params=False)): super().__init__() # keep everything deterministic for model initialization torch.manual_seed(0) self.inner: Union[torch.nn.Linear, FullyShardedDataParallel] = \ torch.nn.Linear(2, 2).cuda() if wrap_fsdp: self.inner = FullyShardedDataParallel(self.inner, cpu_offload=cpu_offload) self.outer = torch.nn.Linear(2, 2).cuda() def forward(self, x): y = self.inner(x) return self.outer(y) class TransformerWithSharedParams(nn.Module): def __init__( self, group, *args, d_vocab=23, d_model=16, add_bn=True, fsdp_init_mode=FSDPInitMode.CUDA_AFTER, **kwargs ): super().__init__() self.rank = group.rank() self.world_size = group.size() torch.manual_seed(0) # keep everything deterministic assert ( d_vocab >= 12 ), "dim of vocab should be larger than 12, as we use torch.arange(12) as input" self.embed_tokens = nn.Embedding(d_vocab, d_model) self.transformer = nn.Transformer( d_model=d_model, num_encoder_layers=2, num_decoder_layers=2, dim_feedforward=8, dropout=0.1, ) self.output_proj = nn.Linear(d_model, d_vocab) # share the embedding and output projection weights self.output_proj.weight = self.embed_tokens.weight self.register_buffer( "vocab_bias", self.embed_tokens.weight.new_ones((d_model,)) ) self.register_buffer("long_buffer", torch.zeros_like(self.vocab_bias, dtype=torch.long)) # type: ignore[arg-type] self.bs = 2 self.bn = torch.nn.BatchNorm1d(self.bs) if add_bn else torch.nn.Identity() move_to_cuda = fsdp_init_mode == FSDPInitMode.CUDA_BEFORE self = _maybe_cuda(self, move_to_cuda) def get_input(self, device): torch.manual_seed(1 + self.rank) # keep everything deterministic src = torch.arange(12, device=device).view(6, self.bs) # T x B tgt = torch.arange(self.bs * 4, device=device).view(4, self.bs) # T x B return (src, tgt) def forward(self, src_ids, tgt_ids): src = self.embed_tokens(src_ids) src = src + self.vocab_bias + self.long_buffer.type_as(src) # type: ignore[operator] tgt = self.embed_tokens(tgt_ids) tgt = self.bn(tgt) x = self.transformer(src, tgt) return self.output_proj(x) def get_loss(self, input, output): _, tgt = input return nn.functional.cross_entropy( output.view(-1, output.size(-1)), tgt.view(-1), reduction="sum" ) def run_backward(self, loss): loss.backward() def get_ignored_modules(self): return [self.transformer] class NestedWrappedModule(nn.Module): def __init__(self, group, wrap_fsdp, *args, wrap_everything=False, fsdp_init_mode=FSDPInitMode.CUDA_AFTER, **kwargs): super().__init__() self.rank = group.rank() self.world_size = group.size() move_to_cuda = fsdp_init_mode == FSDPInitMode.CUDA_BEFORE def _maybe_wrap(layer): if wrap_fsdp: return FullyShardedDataParallel(layer, group, *args, **kwargs) return layer torch.manual_seed(0) # keep everything deterministic if wrap_everything: self.module = nn.Sequential( _maybe_wrap(_maybe_cuda(nn.Linear(8, 4), move_to_cuda)), _maybe_wrap(_maybe_cuda(nn.Linear(4, 16), move_to_cuda)), _maybe_wrap(_maybe_cuda(nn.Linear(16, 4), move_to_cuda)), _maybe_wrap(_maybe_cuda(nn.Linear(4, 8), move_to_cuda)), ) else: self.module = nn.Sequential( _maybe_cuda(nn.Linear(8, 4), move_to_cuda), _maybe_wrap( nn.Sequential( _maybe_wrap(_maybe_cuda(nn.Linear(4, 16), move_to_cuda)), _maybe_cuda(nn.Linear(16, 16), move_to_cuda), ), ), _maybe_wrap(_maybe_cuda(nn.Linear(16, 4), move_to_cuda)), _maybe_cuda(nn.Linear(4, 8), move_to_cuda), ) def get_input(self, device): torch.manual_seed(1 + self.rank) # keep everything deterministic return (torch.rand(4, 8, device=device),) def forward(self, x): return self.module(x) def get_loss(self, input, output): loss = output.sum() return loss def run_backward(self, loss): loss.backward() class ModuleWithDelay(nn.Module): def __init__(self, module, delay_after_loss_ms=0, delay_before_reduction_ms=0): super().__init__() self.delay_after_loss_ms = delay_after_loss_ms self.delay_before_reduction_ms = delay_before_reduction_ms self.module = module def get_input(self, device): return self.module.get_input(device) def forward(self, x): return self.module(x) def get_loss(self, input, output): loss = self.module.get_loss(input, output) if self.delay_after_loss_ms > 0: torch.cuda._sleep(int(self.delay_after_loss_ms * get_cycles_per_ms())) return loss def run_backward(self, loss): orig_reduce_scatter = torch.distributed._reduce_scatter_base def _delayed_reduce_scatter(*args, **kwargs): if self.delay_before_reduction_ms > 0: torch.cuda._sleep( int(self.delay_before_reduction_ms * get_cycles_per_ms()) ) return orig_reduce_scatter(*args, **kwargs) with mock.patch( "torch.distributed._reduce_scatter_base", _delayed_reduce_scatter ): self.module.run_backward(loss) class NestedWrappedModuleWithDelay(ModuleWithDelay): def __init__( self, group, wrap_fsdp, fsdp_init_mode=FSDPInitMode.CUDA_AFTER, cpu_offload=None, backward_prefetch=None, forward_prefetch=False, sharding_strategy=None, mixed_precision=None, **kwargs ): super().__init__( NestedWrappedModule( group, wrap_fsdp, fsdp_init_mode=fsdp_init_mode, cpu_offload=cpu_offload, backward_prefetch=backward_prefetch, forward_prefetch=forward_prefetch, sharding_strategy=sharding_strategy, mixed_precision=mixed_precision, ), **kwargs ) class DummyDDP(nn.Module): def __init__(self, module): super().__init__() self.module = module def forward(self, *args, **kwargs): return self.module(*args, **kwargs) class MixtureOfExperts(NestedWrappedModule): def __init__(self, group, wrap_fsdp, *args, delay_before_free_ms=0, fsdp_init_mode=FSDPInitMode.CUDA_BEFORE, **kwargs): super().__init__(group, wrap_fsdp) self.group = group self.delay_before_free_ms = delay_before_free_ms self.wrap_fsdp = wrap_fsdp self.move_to_cuda = fsdp_init_mode == FSDPInitMode.CUDA_BEFORE # "expert" params are different on each rank torch.manual_seed(42 + group.rank()) d_expert = 23 d_shared = 12 d_input = 8 expert = _maybe_cuda(nn.Linear(d_expert, d_shared), self.move_to_cuda) self.num_expert_params = sum([p.numel() for p in expert.parameters()]) for p in expert.parameters(): p.expert = True # type: ignore[attr-defined] # everything else is shared torch.manual_seed(0) shared = _maybe_cuda(nn.Linear(d_shared, d_expert), self.move_to_cuda) if wrap_fsdp: # we create a process group of size 1 for the expert params expert_group = torch.distributed.new_group( [group.rank()] ) # world size 1 means no shard expert = FullyShardedDataParallel(expert, expert_group, **kwargs) # type: ignore[assignment] shared = FullyShardedDataParallel(shared, group, **kwargs) # type: ignore[assignment] self.module = nn.Sequential( _maybe_cuda(nn.Linear(d_input, d_shared), self.move_to_cuda), shared, expert, _maybe_cuda(nn.Linear(d_shared, d_input), self.move_to_cuda) ) def forward(self, x): if self.delay_before_free_ms > 0: expert = self.module[2] if isinstance(expert, FullyShardedDataParallel): orig_free_full_params = self.module[2]._free_full_params def _free_full_params_with_delay(*args): torch.cuda._sleep( int(self.delay_before_free_ms * get_cycles_per_ms()) ) return orig_free_full_params(*args) assert hasattr( expert, "_free_full_params" ), "expert FSDP module should has _free_full_params attribute." with mock.patch.object( expert, "_free_full_params", _free_full_params_with_delay ): return self.module(x) return self.module(x) def run_backward(self, loss): loss.backward() # manually reduce gradients if not wrapped in FullyShardedDataParallel if not self.wrap_fsdp: with torch.no_grad(): for p in self.parameters(): if hasattr(p, "expert"): continue # these params don't need grad reduction p.grad.div_(self.world_size) torch.distributed.all_reduce(p.grad, group=self.group) class FSDPTest(MultiProcessTestCase): def setUp(self): super(FSDPTest, self).setUp() self._spawn_processes() @property def world_size(self): return torch.cuda.device_count() if torch.cuda.is_available() else 4 @property def init_method(self): return "{}{file_name}".format(FILE_SCHEMA, file_name=self.file_name) def _check_cpu_offload(self, fsdp_model, cpu_offload): self.assertEqual(cpu_offload, fsdp_model.cpu_offload) def _check_backward_prefetch(self, fsdp_model, backward_prefetch): self.assertEqual(backward_prefetch, fsdp_model.backward_prefetch) def _check_forward_prefetch(self, fsdp_model, forward_prefetch): self.assertEqual(forward_prefetch, fsdp_model.forward_prefetch) @classmethod def _run(cls, rank, test_name, file_name, pipe): self = cls(test_name) self.rank = rank self.file_name = file_name print(f"dist init r={self.rank}, world={self.world_size}") # Specify gloo backend to make 'init_process_group()' succeed, # Actual tests will be skipped if there is no enough GPUs. backend = "nccl" if torch.cuda.is_available() else "gloo" try: dist.init_process_group( init_method=self.init_method, backend=backend, world_size=int(self.world_size), rank=self.rank, ) except RuntimeError as e: if "recompile" in e.args[0]: sys.exit(TEST_SKIPS["backend_unavailable"].exit_code) raise if torch.cuda.is_available() and torch.cuda.device_count(): torch.cuda.set_device(self.rank % torch.cuda.device_count()) # Execute barrier prior to running test to ensure that every process # has finished initialization and that the following test # immediately exiting due to a skip doesn't cause flakiness. dist.barrier() self.run_test(test_name, pipe) dist.barrier() dist.destroy_process_group() sys.exit(0) def _train_for_several_steps( self, model, num_steps, autocast, lr=0.01, fsdp_cpu_offload=None, clip_norm=0.3, norm_type=None, save_model=False, mixed_precision=None, enable_sharded_grad_scaler=False, ): cpu_offload_params = fsdp_cpu_offload and fsdp_cpu_offload.offload_params model_device = next(model.parameters()).device sharded_grad_scaler = ShardedGradScaler(enabled=enable_sharded_grad_scaler) # use SGD with momentum instead of Adam, since Adam is scale invariant # and this makes it bad for tests optim = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9) for _ in range(num_steps): optim.zero_grad() with torch.cuda.amp.autocast(enabled=autocast): # Inputs always cuda regardless of cpu offloading, or model.device input = model.module.get_input(torch.device("cuda")) if mixed_precision and not isinstance(model, FullyShardedDataParallel): if isinstance(input, torch.Tensor): input = input.half() else: input = tuple(x.half() for x in input) output = model(*input) # Post-forward, if CPU offloading model param should be on CPU. if cpu_offload_params and isinstance(model, FullyShardedDataParallel): for p in model.parameters(): # Params should always be on CPU, even if # p._is_sharded=False self.assertEqual(p.device, torch.device("cpu")) loss = model.module.get_loss(input, output).to(model_device) loss = sharded_grad_scaler.scale(loss) if not mixed_precision: assert ( loss.dtype == torch.float32 ), "loss data type should be float32, as the original \ parameter data type is float32." else: # FSDP loss is fp16, DDP AMP loss is fp32 if isinstance(model, FullyShardedDataParallel): self.assertEqual(loss.dtype, mixed_precision.param_dtype) else: self.assertEqual(loss.dtype, torch.float32) model.module.run_backward(loss) if norm_type is not None: if isinstance(model, FullyShardedDataParallel): model.clip_grad_norm_(clip_norm, norm_type) total_norm_after_clip = _collect_total_grad_norm_fsdp( model, norm_type, self.rank ) else: torch.nn.utils.clip_grad_norm_(model.parameters(), clip_norm, norm_type) total_norm_after_clip = _collect_total_grad_norm_local( model, norm_type ) self.assertTrue(total_norm_after_clip <= clip_norm) # Post-backward, if CPU offloading model params should be on CPU. if cpu_offload_params and isinstance(model, FullyShardedDataParallel): for p in model.parameters(): # Params should always be on CPU, even if # p._is_sharded=False self.assertEqual(p.device, torch.device("cpu")) # Unscale the gradients and step sharded_grad_scaler.step(optim) # Update the scale factor sharded_grad_scaler.update() # if save_model, simulate save + load. if save_model: state_dict = {k: v.clone() for k, v in model.state_dict().items()} # Zero params, if save/load state_dict did not work properly, this # would break the parity test with DDP. _zero_model(model) model.load_state_dict(state_dict) if isinstance(model, FullyShardedDataParallel): model._assert_state(TrainingState_.IDLE) return loss.detach() def _test_identical_outputs( self, model_init_fn, *args, ref_ddp_fn=None, num_steps=2, fsdp_init_mode=FSDPInitMode.CUDA_AFTER, lr=0.01, cpu_offload=CPUOffload(), backward_prefetch=None, forward_prefetch=False, sharding_strategy=None, mixed_precision=None, save_model=True, clip_norm=0.3, norm_type=None, enable_sharded_grad_scaler=False, **kwargs ): group = dist.distributed_c10d._get_default_group() rank = group.rank() # Establish reference behavior with PyTorch DDP (+ optionally autocast). model = model_init_fn(group=group, wrap_fsdp=False).cuda() if ref_ddp_fn is None: model = nn.parallel.DistributedDataParallel( model, device_ids=[rank], output_device=rank ) else: model = ref_ddp_fn(model) # DDP training ref_loss = self._train_for_several_steps( model, num_steps, autocast=mixed_precision is not None, lr=lr, fsdp_cpu_offload=cpu_offload, mixed_precision=mixed_precision, enable_sharded_grad_scaler=enable_sharded_grad_scaler, ) ref_full_params = list(model.parameters()) # Confirm we get the same behavior using FullyShardedDataParallel. try: model = model_init_fn( group=group, wrap_fsdp=True, fsdp_init_mode=fsdp_init_mode, cpu_offload=cpu_offload, backward_prefetch=backward_prefetch, forward_prefetch=forward_prefetch, sharding_strategy=sharding_strategy, mixed_precision=mixed_precision, ) except Exception as e: raise ValueError(f"model_Init_fn {model_init_fn} got error {str(e)}") cpu_offload = cpu_offload or CPUOffload() # disabled if not specified. model = FullyShardedDataParallel( model, cpu_offload=cpu_offload, backward_prefetch=backward_prefetch, forward_prefetch=forward_prefetch, sharding_strategy=sharding_strategy, mixed_precision=mixed_precision, ) # Call model.cuda() after init FSDP if specified. if fsdp_init_mode == FSDPInitMode.CUDA_AFTER: model = model.cuda() # Note that we don't do this check for FSDPInitMode.CUDA_AFTER since we # expect FSDP code to raise error that we check below, in the case of # offload params. if fsdp_init_mode != FSDPInitMode.CUDA_AFTER and cpu_offload.offload_params: for p in model.parameters(): # Should be on CPU regardless of if param is sharded. self.assertEqual(p.device, torch.device("cpu"), f"Mismatch, cpu offload is {cpu_offload}") only_check_err = fsdp_init_mode == FSDPInitMode.CUDA_AFTER and cpu_offload.offload_params ctx = ( self.assertRaisesRegex(AssertionError, "Expected param to be on CPU") if only_check_err else suppress() ) with ctx: # FSDP training shard_loss = self._train_for_several_steps( model, num_steps, autocast=False, lr=lr, fsdp_cpu_offload=cpu_offload, save_model=save_model, mixed_precision=mixed_precision, enable_sharded_grad_scaler=enable_sharded_grad_scaler, ) # We only check for errors in the case we have the following setup: # model = FSDP(model, cpu_offload=True) # model = model.cuda() # so skip the rest of this logic. if only_check_err: return # If CPU offload, next call will change model params to GPU. Sanity # check that params are on CPU before. if cpu_offload.offload_params: device_set = {p.device for p in model.parameters()} self.assertEqual( {torch.device("cpu")}, device_set, f"Got device set {device_set}" ) shard_full_params = get_full_params(model) if cpu_offload.offload_params: shard_loss = shard_loss.cuda() torch.testing.assert_allclose(ref_loss, shard_loss) # Note that we don't do parameter check when testing mixed precision, # as FSDP will bring the full param back to fp32 but we did model.half() # for DDP so they wouldn't be equal. Further, DDP + model.half() would # run optimizer in reduced precision versus FSDP's full precision. if not mixed_precision: self.assertEqual( ref_full_params, shard_full_params, exact_device=True, msg="FullyShardedDataParallel didn't match PyTorch DDP", ) def _get_wrapped_model( self, group, cuda_first=False, ignore_modules=False, config=None, **model_kwargs, ) -> FullyShardedDataParallel: if config is None: config = {} move_to_cuda = not ( "cpu_offload" in config and config["cpu_offload"].offload_params ) transformer = TransformerWithSharedParams(group, **model_kwargs) if cuda_first and move_to_cuda: transformer = transformer.cuda() if ignore_modules: assert "ignored_modules" not in config, \ "Do not pass in `ignored_modules` via `config`" config["ignored_modules"] = transformer.get_ignored_modules() model = FullyShardedDataParallel(transformer, group, **config) if not cuda_first and move_to_cuda: model = model.cuda() return model def _get_nonwrapped_model( self, group, **model_kwargs, ) -> torch.nn.Module: """Returns the non-wrapped model that is wrapped in :meth:`_get_wrapped_model`. The model used in these two methods should be kept in sync for tests that use both for parity comparisons.""" return TransformerWithSharedParams(group, **model_kwargs).cuda() class SkipModule(nn.Module): def __init__(self): super().__init__() self.lin = nn.Linear(10, 10, bias=False) def forward(self, x): return self.lin(x) class NestedLinear(nn.Module): def __init__(self, fsdp_wrap): super().__init__() if fsdp_wrap: self.nested_linear = wrap(nn.Linear(10, 10, bias=False).cuda()) else: self.nested_linear = nn.Linear(10, 10, bias=False).cuda() def forward(self, x): return self.nested_linear(x) class SkipModel(nn.Module): def __init__(self, double_nest): super().__init__() self.linear = nn.Linear(10, 10, bias=False).cuda() self.linear_skip = SkipModule().cuda() self.nested_linear = wrap(NestedLinear(fsdp_wrap=double_nest)) def forward(self, x): x = self.linear(x) x = self.linear_skip(x) x = self.nested_linear(x) return x def _collect_total_grad_norm_fsdp(model, norm_type, rank): total_norm = _collect_total_grad_norm_local(model, norm_type) op = torch.distributed.ReduceOp.SUM if norm_type == inf: op = torch.distributed.ReduceOp.MAX norm_type = 1.0 return_norm = torch.tensor(total_norm ** norm_type, device=rank) dist.all_reduce(return_norm, op=op) return return_norm ** (1.0 / norm_type) def _collect_total_grad_norm_local(model, norm_type): if norm_type == inf: return max(p.grad.abs().max() for p in model.parameters()) else: total_norm = 0.0 for p in model.parameters(): local_norm = torch.linalg.vector_norm(p.grad, norm_type, dtype=torch.float32) total_norm += local_norm ** norm_type return total_norm ** (1.0 / norm_type)