from caffe2.proto import caffe2_pb2, caffe2_legacy_pb2 from caffe.proto import caffe_pb2 from google.protobuf import text_format import numpy as np from caffe2.python import core, utils def _StateMeetsRule(state, rule): """A function that reproduces Caffe's StateMeetsRule functionality.""" if rule.HasField('phase') and rule.phase != state.phase: return False if rule.HasField('min_level') and state.level < rule.min_level: return False if rule.HasField('max_level') and state.level > rule.max_lavel: return False curr_stages = set(list(state.stage)) # all stages in rule.stages should be in, otherwise it's not a match. if len(rule.stage) and any([s not in curr_stages for s in rule.stage]): return False # none of the stage in rule.stages should be in, otherwise it's not a match. if len(rule.not_stage) and any([s in curr_stages for s in rule.not_stage]): return False # If none of the nonmatch happens, return True. return True def _ShouldInclude(net_state, layer): """A function that reproduces Caffe's inclusion and exclusion rule.""" ret = (len(layer.include) == 0) # check exclude rules: if any exclusion is met, we shouldn't include. ret &= not any([_StateMeetsRule(net_state, rule) for rule in layer.exclude]) if len(layer.include): # check include rules: if any inclusion is met, we should include. ret |= any([_StateMeetsRule(net_state, rule) for rule in layer.include]) return ret def DeleteDropout(net): """A utility function that replaces all dropout operators with Alias. The reason for this is that Caffe involves Dropout in both training and testing, and uses a global mode to determine whether we are training or testing a model. Instead of that, what Caffe2 does is to remove that global mode, and explicitly require the network to NOT contain a dropout operator. In this function, we will simply replace all dropouts with an Alias operator. Inputs: net: a caffe2 net. Outputs: None. The function works by modifying net in-place. """ for op in net.op: if op.type == 'Dropout': op.type = 'Alias' del op.output[1] # output 1 is the dropout mask, which is not needed. del op.arg[:] # args is used in Dropout but not needed in Alias. return class CacaRegistry(object): registry_ = {} @classmethod def Register(cls, op_name): """A decorator for registering gradient mappings.""" def Wrapper(func): cls.registry_[op_name] = func return func return Wrapper @classmethod def TranslateLayer(cls, layer, pretrained_blobs): try: caffe_ops, params = cls.registry_[layer.type](layer, pretrained_blobs) except KeyError as err: raise KeyError('No translator registered for layer: %s yet.' % str(layer)) if caffe_ops is None: return [] if type(caffe_ops) is not list: caffe_ops = [caffe_ops] return caffe_ops, params @classmethod def TranslateModel(cls, caffe_net, pretrained_net, net_state=caffe_pb2.NetState()): net = caffe2_pb2.NetDef() net.name = caffe_net.name net_params = caffe2_pb2.TensorProtos() if len(caffe_net.layer) == 0: raise ValueError('I think something is wrong. This translation script ' 'only accepts new style layers that are stored in the ' 'layer field.') for layer in caffe_net.layer: if not _ShouldInclude(net_state, layer): print 'Current net state does not need layer', layer.name continue print 'Translate layer', layer.name # Get pretrained one pretrained_layers = ( [l for l in pretrained_net.layer if l.name == layer.name] + [l for l in pretrained_net.layers if l.name == layer.name]) if len(pretrained_layers) > 1: raise ValueError('huh? more than one pretrained layer of one name?') elif len(pretrained_layers) == 1: pretrained_blobs = [utils.CaffeBlobToNumpyArray(blob) for blob in pretrained_layers[0].blobs] else: # No pretrained layer for the given layer name. We'll just pass no # parameter blobs. # print 'No pretrained layer for layer', layer.name pretrained_blobs = [] operators, params = cls.TranslateLayer(layer, pretrained_blobs) net.op.extend(operators) net_params.protos.extend(params) return net, net_params def TranslateModel(caffe_net, pretrained_net): return CacaRegistry.TranslateModel(caffe_net, pretrained_net) def BaseTranslate(layer, caffe2_type): caffe2_op = caffe2_pb2.OperatorDef() caffe2_op.type = caffe2_type caffe2_op.input.extend(layer.bottom) caffe2_op.output.extend(layer.top) return caffe2_op def AddArgument(op, key, value): """Makes an argument based on the value type.""" op.arg.extend([utils.MakeArgument(key, value)]) ################################################################################ # Common translators for layers. ################################################################################ @CacaRegistry.Register("Convolution") def TranslateConv(layer, pretrained_blobs): param = layer.convolution_param if param.group > 1: return TranslateConvWithGroups(layer, pretrained_blobs) # If there is no odd things, we will basically translate it to a standard # caffe2 op. caffe_op = BaseTranslate(layer, "Conv") output = caffe_op.output[0] caffe_op.input.extend([output + '_w', output + '_b']) AddArgument(caffe_op, "stride", param.stride) AddArgument(caffe_op, "kernel", param.kernel_size) AddArgument(caffe_op, "pad", param.pad) AddArgument(caffe_op, "order", "NCHW") weight = utils.NumpyArrayToCaffe2Tensor(pretrained_blobs[0], output + '_w') bias = utils.NumpyArrayToCaffe2Tensor( pretrained_blobs[1].flatten(), output + '_b') return caffe_op, [weight, bias] def TranslateConvWithGroups(layer, pretrained_blobs): print ("Legacy warning: convolution with groups seem to be less and less " + "popular, so we no longer have it as a first-class citizen op. " + "Instead, we will simulate it with depth split followed by conv " + "followed by depth concat.") caffe_ops = [] caffe_params = [] param = layer.convolution_param weight, bias = pretrained_blobs bias = bias.flatten() n, c, h, w = weight.shape g = param.group # group od = int(n / g) # output dimension if (od * g != n): # This should not happen: n should always be divisible by g. raise ValueError("This should not happen.") output = layer.top[0] # first, depth_split depth_split_op = core.CreateOperator("DepthSplit")( layer.bottom[0], ['_' + output + '_gconv_split_' + str(i) for i in range(g)], dimensions=[c for i in range(g)], order="NCHW") caffe_ops.append(depth_split_op) # second, convolutions for i in range(g): # convolution layer i this_weight = utils.NumpyArrayToCaffe2Tensor( weight[i * od : (i + 1) * od], output + '_gconv_' + str(i) + '_w') this_bias = utils.NumpyArrayToCaffe2Tensor( bias[i * od : (i + 1) * od], output + '_gconv_' + str(i) + '_b') conv_op = core.CreateOperator("Conv")( [depth_split_op.output[i], this_weight.name, this_bias.name], ['_' + output + '_gconv_conv_' + str(i)], stride=param.stride, kernel=param.kernel_size, pad=param.pad, order="NCHW") caffe_ops.append(conv_op) caffe_params.extend([this_weight, this_bias]) # third, depth concat depth_concat_op = core.CreateOperator("DepthConcat")( ['_' + output + '_gconv_conv_' + str(i) for i in range(g)], [output, '_' + output + '_gconv_concat_dims'], order="NCHW") caffe_ops.append(depth_concat_op) return caffe_ops, caffe_params @CacaRegistry.Register("ReLU") def TranslateRelu(layer, pretrained_blobs): return BaseTranslate(layer, "Relu"), [] @CacaRegistry.Register("Pooling") def TranslatePool(layer, pretrained_blobs): param = layer.pooling_param if param.pool == caffe_pb2.PoolingParameter.MAX: caffe_op = BaseTranslate(layer, "MaxPool") caffe_op.output.extend(['_' + caffe_op.output[0] + '_maxid']) elif param.pool == caffe_pb2.PoolingParameter.AVE: caffe_op = BaseTranslate(layer, "AveragePool") AddArgument(caffe_op, "stride", int(param.stride)) AddArgument(caffe_op, "kernel", int(param.kernel_size)) AddArgument(caffe_op, "pad", int(param.pad)) AddArgument(caffe_op, "order", "NCHW") # TODO: Figure out how we deal with the legacy padding behavior. For now, # we will silently ignore the legacy padding behavior and hope for the best. # Basically, we will need to explicitly run a Caffe script to figure out if # the legacy padding is triggered, and deal with that explicitly. #AddArgument(caffe_op, "legacy_pad", caffe2_legacy_pb2.CAFFE_LEGACY_POOLING) return caffe_op, [] @CacaRegistry.Register("LRN") def TranslateLRN(layer, pretrained_blobs): caffe_op = BaseTranslate(layer, "LRN") caffe_op.output.extend(['_' + caffe_op.output[0] + '_scale']) param = layer.lrn_param if param.norm_region != caffe_pb2.LRNParameter.ACROSS_CHANNELS: raise ValueError("Does not support norm region other than across channels.") AddArgument(caffe_op, "size", int(param.local_size)) AddArgument(caffe_op, "alpha", float(param.alpha)) AddArgument(caffe_op, "beta", float(param.beta)) AddArgument(caffe_op, "bias", float(param.k)) AddArgument(caffe_op, "order", "NCHW") return caffe_op, [] @CacaRegistry.Register("InnerProduct") def TranslateInnerProduct(layer, pretrained_blobs): caffe_op = BaseTranslate(layer, "FC") output = caffe_op.output[0] caffe_op.input.extend([output + '_w', output + '_b']) weight = utils.NumpyArrayToCaffe2Tensor( pretrained_blobs[0][0,0], output + '_w') bias = utils.NumpyArrayToCaffe2Tensor( pretrained_blobs[1].flatten(), output + '_b') return caffe_op, [weight, bias] @CacaRegistry.Register("Dropout") def TranslateDropout(layer, pretrained_blobs): caffe_op = BaseTranslate(layer, "Dropout") caffe_op.output.extend(['_' + caffe_op.output[0] + '_mask']) param = layer.dropout_param AddArgument(caffe_op, "ratio", param.dropout_ratio) return caffe_op, [] @CacaRegistry.Register("Softmax") def TranslateSoftmax(layer, pretrained_blobs): caffe_op = BaseTranslate(layer, "Softmax") return caffe_op, [] @CacaRegistry.Register("Concat") def TranslateConcat(layer, pretrained_blobs): caffe_op = BaseTranslate(layer, "DepthConcat") caffe_op.output.extend(['_' + caffe_op.output[0] + '_dims']) AddArgument(caffe_op, "order", "NCHW") return caffe_op, []