import http.server import itertools import os import os.path import pickle import random import socketserver import sys import tarfile import tempfile import threading import time import unittest import warnings import zipfile from functools import partial from typing import ( Any, Awaitable, Dict, Generic, Iterator, List, NamedTuple, Optional, Set, Tuple, Type, TypeVar, Union, ) from unittest import skipIf import numpy as np import torch import torch.utils.data.backward_compatibility import torch.utils.data.datapipes as dp import torch.utils.data.graph import torch.utils.data.sharding from torch.testing._internal.common_utils import TestCase, run_tests, suppress_warnings from torch.utils.data import ( DataLoader, DataChunk, IterDataPipe, MapDataPipe, RandomSampler, argument_validation, runtime_validation, runtime_validation_disabled, ) from torch.utils.data.datapipes.utils.decoder import ( basichandlers as decoder_basichandlers, ) try: import dill # XXX: By default, dill writes the Pickler dispatch table to inject its # own logic there. This globally affects the behavior of the standard library # pickler for any user who transitively depends on this module! # Undo this extension to avoid altering the behavior of the pickler globally. dill.extend(use_dill=False) HAS_DILL = True except ImportError: HAS_DILL = False skipIfNoDill = skipIf(not HAS_DILL, "no dill") try: import pandas # type: ignore[import] # noqa: F401 F403 HAS_PANDAS = True except ImportError: HAS_PANDAS = False skipIfNoDataFrames = skipIf(not HAS_PANDAS, "no dataframes (pandas)") T_co = TypeVar("T_co", covariant=True) def create_temp_dir_and_files(): # The temp dir and files within it will be released and deleted in tearDown(). # Adding `noqa: P201` to avoid mypy's warning on not releasing the dir handle within this function. temp_dir = tempfile.TemporaryDirectory() # noqa: P201 temp_dir_path = temp_dir.name with tempfile.NamedTemporaryFile(dir=temp_dir_path, delete=False, suffix='.txt') as f: temp_file1_name = f.name with tempfile.NamedTemporaryFile(dir=temp_dir_path, delete=False, suffix='.byte') as f: temp_file2_name = f.name with tempfile.NamedTemporaryFile(dir=temp_dir_path, delete=False, suffix='.empty') as f: temp_file3_name = f.name with open(temp_file1_name, 'w') as f1: f1.write('0123456789abcdef') with open(temp_file2_name, 'wb') as f2: f2.write(b"0123456789abcdef") temp_sub_dir = tempfile.TemporaryDirectory(dir=temp_dir_path) # noqa: P201 temp_sub_dir_path = temp_sub_dir.name with tempfile.NamedTemporaryFile(dir=temp_sub_dir_path, delete=False, suffix='.txt') as f: temp_sub_file1_name = f.name with tempfile.NamedTemporaryFile(dir=temp_sub_dir_path, delete=False, suffix='.byte') as f: temp_sub_file2_name = f.name with open(temp_sub_file1_name, 'w') as f1: f1.write('0123456789abcdef') with open(temp_sub_file2_name, 'wb') as f2: f2.write(b"0123456789abcdef") return [(temp_dir, temp_file1_name, temp_file2_name, temp_file3_name), (temp_sub_dir, temp_sub_file1_name, temp_sub_file2_name)] # Given a DataPipe and integer n, iterate the DataPipe for n elements and store the elements into a list # Then, reset the DataPipe and return a tuple of two lists # 1. A list of elements yielded before the reset # 2. A list of all elements of the DataPipe after the reset def reset_after_n_next_calls(datapipe: IterDataPipe[T_co], n: int) -> Tuple[List[T_co], List[T_co]]: it = iter(datapipe) res_before_reset = [] for _ in range(n): res_before_reset.append(next(it)) return res_before_reset, list(datapipe) class TestDataChunk(TestCase): def setUp(self): self.elements = list(range(10)) random.shuffle(self.elements) self.chunk: DataChunk[int] = DataChunk(self.elements) def test_getitem(self): for i in range(10): self.assertEqual(self.elements[i], self.chunk[i]) def test_iter(self): for ele, dc in zip(self.elements, iter(self.chunk)): self.assertEqual(ele, dc) def test_len(self): self.assertEqual(len(self.elements), len(self.chunk)) def test_as_string(self): self.assertEqual(str(self.chunk), str(self.elements)) batch = [self.elements] * 3 chunks: List[DataChunk[int]] = [DataChunk(self.elements)] * 3 self.assertEqual(str(batch), str(chunks)) def test_sort(self): chunk: DataChunk[int] = DataChunk(self.elements) chunk.sort() self.assertTrue(isinstance(chunk, DataChunk)) for i, d in enumerate(chunk): self.assertEqual(i, d) def test_reverse(self): chunk: DataChunk[int] = DataChunk(self.elements) chunk.reverse() self.assertTrue(isinstance(chunk, DataChunk)) for i in range(10): self.assertEqual(chunk[i], self.elements[9 - i]) def test_random_shuffle(self): elements = list(range(10)) chunk: DataChunk[int] = DataChunk(elements) rng = random.Random(0) rng.shuffle(chunk) rng = random.Random(0) rng.shuffle(elements) self.assertEqual(chunk, elements) class TestIterableDataPipeBasic(TestCase): def setUp(self): ret = create_temp_dir_and_files() self.temp_dir = ret[0][0] self.temp_files = ret[0][1:] self.temp_sub_dir = ret[1][0] self.temp_sub_files = ret[1][1:] def tearDown(self): try: self.temp_sub_dir.cleanup() self.temp_dir.cleanup() except Exception as e: warnings.warn("TestIterableDatasetBasic was not able to cleanup temp dir due to {}".format(str(e))) def test_listdirfiles_iterable_datapipe(self): temp_dir = self.temp_dir.name datapipe = dp.iter.FileLister(temp_dir, '') count = 0 for pathname in datapipe: count = count + 1 self.assertTrue(pathname in self.temp_files) self.assertEqual(count, len(self.temp_files)) count = 0 datapipe = dp.iter.FileLister(temp_dir, '', recursive=True) for pathname in datapipe: count = count + 1 self.assertTrue((pathname in self.temp_files) or (pathname in self.temp_sub_files)) self.assertEqual(count, len(self.temp_files) + len(self.temp_sub_files)) def test_loadfilesfromdisk_iterable_datapipe(self): # test import datapipe class directly from torch.utils.data.datapipes.iter import ( FileLister, FileLoader, ) temp_dir = self.temp_dir.name datapipe1 = FileLister(temp_dir, '') datapipe2 = FileLoader(datapipe1) count = 0 for rec in datapipe2: count = count + 1 self.assertTrue(rec[0] in self.temp_files) with open(rec[0], 'rb') as f: self.assertEqual(rec[1].read(), f.read()) rec[1].close() self.assertEqual(count, len(self.temp_files)) def test_readfilesfromtar_iterable_datapipe(self): temp_dir = self.temp_dir.name temp_tarfile_pathname = os.path.join(temp_dir, "test_tar.tar") with tarfile.open(temp_tarfile_pathname, "w:gz") as tar: tar.add(self.temp_files[0]) tar.add(self.temp_files[1]) tar.add(self.temp_files[2]) datapipe1 = dp.iter.FileLister(temp_dir, '*.tar') datapipe2 = dp.iter.FileLoader(datapipe1) datapipe3 = dp.iter.TarArchiveReader(datapipe2) # Test Case: Read extracted files before reaching the end of the tarfile for rec, temp_file in itertools.zip_longest(datapipe3, self.temp_files): self.assertTrue(rec is not None and temp_file is not None) self.assertEqual(os.path.basename(rec[0]), os.path.basename(temp_file)) with open(temp_file, 'rb') as f: self.assertEqual(rec[1].read(), f.read()) rec[1].close() # Test Case: Read extracted files after reaching the end of the tarfile data_refs = list(datapipe3) self.assertEqual(len(data_refs), len(self.temp_files)) for data_ref, temp_file in zip(data_refs, self.temp_files): self.assertEqual(os.path.basename(data_ref[0]), os.path.basename(temp_file)) with open(temp_file, 'rb') as f: self.assertEqual(data_ref[1].read(), f.read()) data_ref[1].close() # Test Case: reset the DataPipe after reading part of it n_elements_before_reset = 1 res_before_reset, res_after_reset = reset_after_n_next_calls(datapipe3, n_elements_before_reset) # Check result accumulated before reset self.assertEqual(len(res_before_reset), n_elements_before_reset) for ele_before_reset, temp_file in zip(res_before_reset, self.temp_files): self.assertEqual(os.path.basename(ele_before_reset[0]), os.path.basename(temp_file)) with open(temp_file, 'rb') as f: self.assertEqual(ele_before_reset[1].read(), f.read()) ele_before_reset[1].close() # Check result accumulated after reset self.assertEqual(len(res_after_reset), len(self.temp_files)) for ele_after_reset, temp_file in zip(res_after_reset, self.temp_files): self.assertEqual(os.path.basename(ele_after_reset[0]), os.path.basename(temp_file)) with open(temp_file, 'rb') as f: self.assertEqual(ele_after_reset[1].read(), f.read()) ele_after_reset[1].close() # This test throws a warning because data_stream in side ZipArchiveReader cannot be closed # due to the way zipfiles.open() is implemented def test_readfilesfromzip_iterable_datapipe(self): temp_dir = self.temp_dir.name temp_zipfile_pathname = os.path.join(temp_dir, "test_zip.zip") with zipfile.ZipFile(temp_zipfile_pathname, 'w') as myzip: myzip.write(self.temp_files[0]) myzip.write(self.temp_files[1]) myzip.write(self.temp_files[2]) datapipe1 = dp.iter.FileLister(temp_dir, '*.zip') datapipe2 = dp.iter.FileLoader(datapipe1) datapipe3 = dp.iter.ZipArchiveReader(datapipe2) # Test Case: read extracted files before reaching the end of the zipfile for rec, temp_file in itertools.zip_longest(datapipe3, self.temp_files): self.assertTrue(rec is not None and temp_file is not None) self.assertEqual(os.path.basename(rec[0]), os.path.basename(temp_file)) with open(temp_file, 'rb') as f: self.assertEqual(rec[1].read(), f.read()) rec[1].close() # Test Case: read extracted files after reaching the end of the zipile data_refs = list(datapipe3) self.assertEqual(len(data_refs), len(self.temp_files)) for data_ref, temp_file in zip(data_refs, self.temp_files): self.assertEqual(os.path.basename(data_ref[0]), os.path.basename(temp_file)) with open(temp_file, 'rb') as f: self.assertEqual(data_ref[1].read(), f.read()) data_ref[1].close() # Test Case: reset the DataPipe after reading part of it n_elements_before_reset = 1 res_before_reset, res_after_reset = reset_after_n_next_calls(datapipe3, n_elements_before_reset) # Check the results accumulated before reset self.assertEqual(len(res_before_reset), n_elements_before_reset) for ele_before_reset, temp_file in zip(res_before_reset, self.temp_files): self.assertEqual(os.path.basename(ele_before_reset[0]), os.path.basename(temp_file)) with open(temp_file, 'rb') as f: self.assertEqual(ele_before_reset[1].read(), f.read()) ele_before_reset[1].close() # Check the results accumulated after reset self.assertEqual(len(res_after_reset), len(self.temp_files)) for ele_after_reset, temp_file in zip(res_after_reset, self.temp_files): self.assertEqual(os.path.basename(ele_after_reset[0]), os.path.basename(temp_file)) with open(temp_file, 'rb') as f: self.assertEqual(ele_after_reset[1].read(), f.read()) ele_after_reset[1].close() def test_routeddecoder_iterable_datapipe(self): temp_dir = self.temp_dir.name temp_pngfile_pathname = os.path.join(temp_dir, "test_png.png") png_data = np.array([[[1., 0., 0.], [1., 0., 0.]], [[1., 0., 0.], [1., 0., 0.]]], dtype=np.single) np.save(temp_pngfile_pathname, png_data) datapipe1 = dp.iter.FileLister(temp_dir, ['*.png', '*.txt']) datapipe2 = dp.iter.FileLoader(datapipe1) def _png_decoder(extension, data): if extension != 'png': return None return np.load(data) def _helper(prior_dp, dp, channel_first=False): # Byte stream is not closed for inp in prior_dp: self.assertFalse(inp[1].closed) for inp, rec in zip(prior_dp, dp): ext = os.path.splitext(rec[0])[1] if ext == '.png': expected = np.array([[[1., 0., 0.], [1., 0., 0.]], [[1., 0., 0.], [1., 0., 0.]]], dtype=np.single) if channel_first: expected = expected.transpose(2, 0, 1) self.assertEqual(rec[1], expected) else: with open(rec[0], 'rb') as f: self.assertEqual(rec[1], f.read().decode('utf-8')) # Corresponding byte stream is closed by Decoder self.assertTrue(inp[1].closed) cached = list(datapipe2) datapipe3 = dp.iter.RoutedDecoder(cached, _png_decoder) datapipe3.add_handler(decoder_basichandlers) _helper(cached, datapipe3) cached = list(datapipe2) datapipe4 = dp.iter.RoutedDecoder(cached, decoder_basichandlers) datapipe4.add_handler(_png_decoder) _helper(cached, datapipe4, channel_first=True) def test_groupby_iterable_datapipe(self): temp_dir = self.temp_dir.name temp_tarfile_pathname = os.path.join(temp_dir, "test_tar.tar") file_list = [ "a.png", "b.png", "c.json", "a.json", "c.png", "b.json", "d.png", "d.json", "e.png", "f.json", "g.png", "f.png", "g.json", "e.json", "h.txt", "h.json"] with tarfile.open(temp_tarfile_pathname, "w:gz") as tar: for file_name in file_list: file_pathname = os.path.join(temp_dir, file_name) with open(file_pathname, 'w') as f: f.write('12345abcde') tar.add(file_pathname) datapipe1 = dp.iter.FileLister(temp_dir, '*.tar') datapipe2 = dp.iter.FileLoader(datapipe1) datapipe3 = dp.iter.TarArchiveReader(datapipe2) def group_fn(data): filepath, _ = data return os.path.basename(filepath).split(".")[0] datapipe4 = dp.iter.Grouper(datapipe3, group_key_fn=group_fn, group_size=2) def order_fn(data): data.sort(key=lambda f: f[0], reverse=True) return data datapipe5 = dp.iter.Mapper(datapipe4, fn=order_fn) # type: ignore[var-annotated] expected_result = [ ("a.png", "a.json"), ("c.png", "c.json"), ("b.png", "b.json"), ("d.png", "d.json"), ("f.png", "f.json"), ("g.png", "g.json"), ("e.png", "e.json"), ("h.txt", "h.json")] count = 0 for rec, expected in zip(datapipe5, expected_result): count = count + 1 self.assertEqual(os.path.basename(rec[0][0]), expected[0]) self.assertEqual(os.path.basename(rec[1][0]), expected[1]) for i in [0, 1]: self.assertEqual(rec[i][1].read(), b'12345abcde') rec[i][1].close() self.assertEqual(count, 8) def test_demux_mux_datapipe(self): numbers = NumbersDataset(10) n1, n2 = numbers.demux(2, lambda x: x % 2) self.assertEqual([0, 2, 4, 6, 8], list(n1)) self.assertEqual([1, 3, 5, 7, 9], list(n2)) numbers = NumbersDataset(10) n1, n2, n3 = numbers.demux(3, lambda x: x % 3) n = n1.mux(n2, n3) self.assertEqual(list(range(10)), list(n)) # Test Case: Uneven DataPipes source_numbers = list(range(0, 10)) + [10, 12] numbers_dp = IDP(source_numbers) n1, n2 = numbers_dp.demux(2, lambda x: x % 2) self.assertEqual([0, 2, 4, 6, 8, 10, 12], list(n1)) self.assertEqual([1, 3, 5, 7, 9], list(n2)) n = n1.mux(n2) self.assertEqual(source_numbers, list(n)) class TestDataFramesPipes(TestCase): """ Most of test will fail if pandas instaled, but no dill available. Need to rework them to avoid multiple skips. """ def _get_datapipe(self, range=10, dataframe_size=7): return NumbersDataset(range) \ .map(lambda i: (i, i % 3)) def _get_dataframes_pipe(self, range=10, dataframe_size=7): return NumbersDataset(range) \ .map(lambda i: (i, i % 3)) \ ._to_dataframes_pipe( columns=['i', 'j'], dataframe_size=dataframe_size) @skipIfNoDataFrames @skipIfNoDill # TODO(VitalyFedyunin): Decouple tests from dill by avoiding lambdas in map def test_capture(self): dp_numbers = self._get_datapipe().map(lambda x: (x[0], x[1], x[1] + 3 * x[0])) df_numbers = self._get_dataframes_pipe() df_numbers['k'] = df_numbers['j'] + df_numbers.i * 3 self.assertEqual(list(dp_numbers), list(df_numbers)) @skipIfNoDataFrames @skipIfNoDill def test_shuffle(self): # With non-zero (but extremely low) probability (when shuffle do nothing), # this test fails, so feel free to restart df_numbers = self._get_dataframes_pipe(range=1000).shuffle() dp_numbers = self._get_datapipe(range=1000) df_result = [tuple(item) for item in df_numbers] self.assertNotEqual(list(dp_numbers), df_result) self.assertEqual(list(dp_numbers), sorted(df_result)) @skipIfNoDataFrames @skipIfNoDill def test_batch(self): df_numbers = self._get_dataframes_pipe(range=100).batch(8) df_numbers_list = list(df_numbers) last_batch = df_numbers_list[-1] self.assertEqual(4, len(last_batch)) unpacked_batch = [tuple(row) for row in last_batch] self.assertEqual([(96, 0), (97, 1), (98, 2), (99, 0)], unpacked_batch) @skipIfNoDataFrames @skipIfNoDill def test_unbatch(self): df_numbers = self._get_dataframes_pipe(range=100).batch(8).batch(3) dp_numbers = self._get_datapipe(range=100) self.assertEqual(list(dp_numbers), list(df_numbers.unbatch(2))) @skipIfNoDataFrames @skipIfNoDill def test_filter(self): df_numbers = self._get_dataframes_pipe(range=10).filter(lambda x: x.i > 5) self.assertEqual([(6, 0), (7, 1), (8, 2), (9, 0)], list(df_numbers)) class FileLoggerSimpleHTTPRequestHandler(http.server.SimpleHTTPRequestHandler): def __init__(self, *args, logfile=None, **kwargs): self.__loggerHandle = None if logfile is not None: self.__loggerHandle = open(logfile, 'a+') super().__init__(*args, **kwargs) def log_message(self, format, *args): if self.__loggerHandle is not None: self.__loggerHandle.write("%s - - [%s] %s\n" % (self.address_string(), self.log_date_time_string(), format % args)) return def finish(self): if self.__loggerHandle is not None: self.__loggerHandle.close() super().finish() def setUpLocalServerInThread(): try: Handler = partial(FileLoggerSimpleHTTPRequestHandler, logfile=None) socketserver.TCPServer.allow_reuse_address = True server = socketserver.TCPServer(("", 0), Handler) server_addr = "{host}:{port}".format(host=server.server_address[0], port=server.server_address[1]) server_thread = threading.Thread(target=server.serve_forever) server_thread.start() # Wait a bit for the server to come up time.sleep(3) return (server_thread, server_addr, server) except Exception: raise def create_temp_files_for_serving(tmp_dir, file_count, file_size, file_url_template): furl_local_file = os.path.join(tmp_dir, "urls_list") with open(furl_local_file, 'w') as fsum: for i in range(0, file_count): f = os.path.join(tmp_dir, "webfile_test_{num}.data".format(num=i)) write_chunk = 1024 * 1024 * 16 rmn_size = file_size while rmn_size > 0: with open(f, 'ab+') as fout: fout.write(os.urandom(min(rmn_size, write_chunk))) rmn_size = rmn_size - min(rmn_size, write_chunk) fsum.write(file_url_template.format(num=i)) class TestIterableDataPipeHttp(TestCase): __server_thread: threading.Thread __server_addr: str __server: socketserver.TCPServer @classmethod def setUpClass(cls): try: (cls.__server_thread, cls.__server_addr, cls.__server) = setUpLocalServerInThread() except Exception as e: warnings.warn("TestIterableDataPipeHttp could\ not set up due to {0}".format(str(e))) @classmethod def tearDownClass(cls): try: cls.__server.shutdown() cls.__server_thread.join(timeout=15) except Exception as e: warnings.warn("TestIterableDataPipeHttp could\ not tear down (clean up temp directory or terminate\ local server) due to {0}".format(str(e))) def _http_test_base(self, test_file_size, test_file_count, timeout=None, chunk=None): def _get_data_from_tuple_fn(data, *args, **kwargs): return data[args[0]] with tempfile.TemporaryDirectory(dir=os.getcwd()) as tmpdir: # create tmp dir and files for test base_tmp_dir = os.path.basename(os.path.normpath(tmpdir)) file_url_template = ("http://{server_addr}/{tmp_dir}/" "/webfile_test_{num}.data\n")\ .format(server_addr=self.__server_addr, tmp_dir=base_tmp_dir, num='{num}') create_temp_files_for_serving(tmpdir, test_file_count, test_file_size, file_url_template) datapipe_dir_f = dp.iter.FileLister(tmpdir, '*_list') datapipe_stream = dp.iter.FileLoader(datapipe_dir_f) datapipe_f_lines = dp.iter.LineReader(datapipe_stream) datapipe_line_url: IterDataPipe[str] = \ dp.iter.Mapper(datapipe_f_lines, _get_data_from_tuple_fn, (1,)) datapipe_http = dp.iter.HttpReader(datapipe_line_url, timeout=timeout) datapipe_tob = dp.iter.StreamReader(datapipe_http, chunk=chunk) for (url, data) in datapipe_tob: self.assertGreater(len(url), 0) self.assertRegex(url, r'^http://.+\d+.data$') if chunk is not None: self.assertEqual(len(data), chunk) else: self.assertEqual(len(data), test_file_size) @unittest.skip("Stress test on large amount of files skipped\ due to the CI timing constraint.") def test_stress_http_reader_iterable_datapipes(self): test_file_size = 10 # STATS: It takes about 5 hours to stress test 16 * 1024 * 1024 # files locally test_file_count = 1024 self._http_test_base(test_file_size, test_file_count) @unittest.skip("Test on the very large file skipped\ due to the CI timing constraint.") def test_large_files_http_reader_iterable_datapipes(self): # STATS: It takes about 11 mins to test a large file of 64GB locally test_file_size = 1024 * 1024 * 128 test_file_count = 1 timeout = 30 chunk = 1024 * 1024 * 8 self._http_test_base(test_file_size, test_file_count, timeout=timeout, chunk=chunk) class IDP_NoLen(IterDataPipe): def __init__(self, input_dp): super().__init__() self.input_dp = input_dp def __iter__(self): for i in self.input_dp: yield i class IDP(IterDataPipe): def __init__(self, input_dp): super().__init__() self.input_dp = input_dp self.length = len(input_dp) def __iter__(self): for i in self.input_dp: yield i def __len__(self): return self.length class MDP(MapDataPipe): def __init__(self, input_dp): super().__init__() self.input_dp = input_dp self.length = len(input_dp) def __getitem__(self, index): return self.input_dp[index] def __len__(self) -> int: return self.length def _fake_fn(data, *args, **kwargs): return data def _fake_filter_fn(data, *args, **kwargs): return data >= 5 def _worker_init_fn(worker_id): random.seed(123) class TestFunctionalIterDataPipe(TestCase): # TODO(VitalyFedyunin): If dill installed this test fails def _test_picklable(self): arr = range(10) picklable_datapipes: List[Tuple[Type[IterDataPipe], IterDataPipe, Tuple, Dict[str, Any]]] = [ (dp.iter.Mapper, IDP(arr), (), {}), (dp.iter.Mapper, IDP(arr), (_fake_fn, (0, ), {'test': True}), {}), (dp.iter.Collator, IDP(arr), (), {}), (dp.iter.Collator, IDP(arr), (_fake_fn, (0, ), {'test': True}), {}), (dp.iter.Filter, IDP(arr), (_fake_filter_fn, (0, ), {'test': True}), {}), ] for dpipe, input_dp, dp_args, dp_kwargs in picklable_datapipes: p = pickle.dumps(dpipe(input_dp, *dp_args, **dp_kwargs)) # type: ignore[call-arg] unpicklable_datapipes: List[Tuple[Type[IterDataPipe], IterDataPipe, Tuple, Dict[str, Any]]] = [ (dp.iter.Mapper, IDP(arr), (lambda x: x, ), {}), (dp.iter.Collator, IDP(arr), (lambda x: x, ), {}), (dp.iter.Filter, IDP(arr), (lambda x: x >= 5, ), {}), ] for dpipe, input_dp, dp_args, dp_kwargs in unpicklable_datapipes: with warnings.catch_warnings(record=True) as wa: datapipe = dpipe(input_dp, *dp_args, **dp_kwargs) # type: ignore[call-arg] self.assertEqual(len(wa), 1) self.assertRegex(str(wa[0].message), r"^Lambda function is not supported for pickle") with self.assertRaises(AttributeError): p = pickle.dumps(datapipe) def test_concat_datapipe(self): input_dp1 = IDP(range(10)) input_dp2 = IDP(range(5)) with self.assertRaisesRegex(ValueError, r"Expected at least one DataPipe"): dp.iter.Concater() with self.assertRaisesRegex(TypeError, r"Expected all inputs to be `IterDataPipe`"): dp.iter.Concater(input_dp1, ()) # type: ignore[arg-type] concat_dp = input_dp1.concat(input_dp2) self.assertEqual(len(concat_dp), 15) self.assertEqual(list(concat_dp), list(range(10)) + list(range(5))) # Test Reset self.assertEqual(list(concat_dp), list(range(10)) + list(range(5))) input_dp_nl = IDP_NoLen(range(5)) concat_dp = input_dp1.concat(input_dp_nl) with self.assertRaisesRegex(TypeError, r"instance doesn't have valid length$"): len(concat_dp) self.assertEqual(list(concat_dp), list(range(10)) + list(range(5))) def test_fork_datapipe(self): input_dp = IDP(range(10)) with self.assertRaises(ValueError): input_dp.fork(num_instances=0) dp1 = input_dp.fork(num_instances=1) self.assertEqual(dp1, input_dp) # Test Case: making sure all child DataPipe shares the same reference dp1, dp2, dp3 = input_dp.fork(num_instances=3) self.assertTrue(all(n1 is n2 and n1 is n3 for n1, n2, n3 in zip(dp1, dp2, dp3))) # Test Case: one child DataPipe yields all value at a time output1, output2, output3 = list(dp1), list(dp2), list(dp3) self.assertEqual(list(range(10)), output1) self.assertEqual(list(range(10)), output2) self.assertEqual(list(range(10)), output3) # Test Case: two child DataPipes yield value together dp1, dp2 = input_dp.fork(num_instances=2) output = [] for n1, n2 in zip(dp1, dp2): output.append((n1, n2)) self.assertEqual([(i, i) for i in range(10)], output) # Test Case: one child DataPipe yields all value first, but buffer_size = 5 being too small dp1, dp2 = input_dp.fork(num_instances=2, buffer_size=5) it1 = iter(dp1) for _ in range(5): next(it1) with self.assertRaises(BufferError): next(it1) with self.assertRaises(BufferError): list(dp2) # Test Case: one child DataPipe yields all value first with unlimited buffer with warnings.catch_warnings(record=True) as wa: dp1, dp2 = input_dp.fork(num_instances=2, buffer_size=-1) self.assertEqual(len(wa), 1) self.assertRegex(str(wa[0].message), r"Unlimited buffer size is set") l1, l2 = list(dp1), list(dp2) for d1, d2 in zip(l1, l2): self.assertEqual(d1, d2) # Test Case: two child DataPipes yield value together with buffer size 1 dp1, dp2 = input_dp.fork(num_instances=2, buffer_size=1) output = [] for n1, n2 in zip(dp1, dp2): output.append((n1, n2)) self.assertEqual([(i, i) for i in range(10)], output) # Test Case: make sure logic related to slowest_ptr is working properly dp1, dp2, dp3 = input_dp.fork(num_instances=3) output1, output2 , output3 = [], [], [] for i, (n1, n2) in enumerate(zip(dp1, dp2)): output1.append(n1) output2.append(n2) if i == 4: # yield all of dp3 when halfway through dp1, dp2 output3 = list(dp3) break self.assertEqual(list(range(5)), output1) self.assertEqual(list(range(5)), output2) self.assertEqual(list(range(10)), output3) # Test Case: DataPipe doesn't reset if this pipe hasn't been read dp1, dp2 = input_dp.fork(num_instances=2) i1, i2 = iter(dp1), iter(dp2) output2 = [] for i, n2 in enumerate(i2): output2.append(n2) if i == 4: i1 = iter(dp1) # Doesn't reset because i1 hasn't been read self.assertEqual(list(range(10)), output2) # Test Case: DataPipe reset when some of it have been read dp1, dp2 = input_dp.fork(num_instances=2) i1, i2 = iter(dp1), iter(dp2) output1, output2 = [], [] for i, (n1, n2) in enumerate(zip(i1, i2)): output1.append(n1) output2.append(n2) if i == 4: with warnings.catch_warnings(record=True) as wa: i1 = iter(dp1) # Reset both all child DataPipe self.assertEqual(len(wa), 1) self.assertRegex(str(wa[0].message), r"Some child DataPipes are not exhausted") self.assertEqual(list(range(5)) + list(range(10)), output1) self.assertEqual(list(range(5)) + list(range(10)), output2) # Test Case: DataPipe reset, even when some other child DataPipes are not read dp1, dp2, dp3 = input_dp.fork(num_instances=3) output1, output2 = list(dp1), list(dp2) self.assertEqual(list(range(10)), output1) self.assertEqual(list(range(10)), output2) with warnings.catch_warnings(record=True) as wa: self.assertEqual(list(range(10)), list(dp1)) # Resets even though dp3 has not been read self.assertEqual(len(wa), 1) self.assertRegex(str(wa[0].message), r"Some child DataPipes are not exhausted") output3 = [] for i, n3 in enumerate(dp3): output3.append(n3) if i == 4: with warnings.catch_warnings(record=True) as wa: output1 = list(dp1) # Resets even though dp3 is only partially read self.assertEqual(len(wa), 1) self.assertRegex(str(wa[0].message), r"Some child DataPipes are not exhausted") self.assertEqual(list(range(5)), output3) self.assertEqual(list(range(10)), output1) break self.assertEqual(list(range(10)), list(dp3)) # dp3 has to read from the start again # Test Case: Each DataPipe inherits the source datapipe's length dp1, dp2, dp3 = input_dp.fork(num_instances=3) self.assertEqual(len(input_dp), len(dp1)) self.assertEqual(len(input_dp), len(dp2)) self.assertEqual(len(input_dp), len(dp3)) def test_demux_datapipe(self): input_dp = IDP(range(10)) with self.assertRaises(ValueError): input_dp.demux(num_instances=0, classifier_fn=lambda x: 0) # Test Case: split into 2 DataPipes and output them one at a time dp1, dp2 = input_dp.demux(num_instances=2, classifier_fn=lambda x: x % 2) output1, output2 = list(dp1), list(dp2) self.assertEqual(list(range(0, 10, 2)), output1) self.assertEqual(list(range(1, 10, 2)), output2) # Test Case: split into 2 DataPipes and output them together dp1, dp2 = input_dp.demux(num_instances=2, classifier_fn=lambda x: x % 2) output = [] for n1, n2 in zip(dp1, dp2): output.append((n1, n2)) self.assertEqual([(i, i + 1) for i in range(0, 10, 2)], output) # Test Case: values of the same classification are lumped together, and buffer_size = 3 being too small dp1, dp2 = input_dp.demux(num_instances=2, classifier_fn=lambda x: 0 if x >= 5 else 1, buffer_size=4) it1 = iter(dp1) with self.assertRaises(BufferError): next(it1) # Buffer raises because first 5 elements all belong to the a different child with self.assertRaises(BufferError): list(dp2) # Test Case: values of the same classification are lumped together, and buffer_size = 5 is just enough dp1, dp2 = input_dp.demux(num_instances=2, classifier_fn=lambda x: 0 if x >= 5 else 1, buffer_size=5) output1, output2 = list(dp1), list(dp2) self.assertEqual(list(range(5, 10)), output1) self.assertEqual(list(range(0, 5)), output2) # Test Case: values of the same classification are lumped together, and unlimited buffer with warnings.catch_warnings(record=True) as wa: dp1, dp2 = input_dp.demux( num_instances=2, classifier_fn=lambda x: 0 if x >= 5 else 1, buffer_size=-1 ) self.assertEqual(len(wa), 1) self.assertRegex(str(wa[0].message), r"Unlimited buffer size is set") output1, output2 = list(dp1), list(dp2) self.assertEqual(list(range(5, 10)), output1) self.assertEqual(list(range(0, 5)), output2) # Test Case: classifer returns a value outside of [0, num_instance - 1] dp = input_dp.demux(num_instances=1, classifier_fn=lambda x: x % 2) it = iter(dp[0]) with self.assertRaises(ValueError): next(it) next(it) # Test Case: DataPipe doesn't reset when it has not been read dp1, dp2 = input_dp.demux(num_instances=2, classifier_fn=lambda x: x % 2) i1 = iter(dp1) output2 = [] i = 0 for i, n2 in enumerate(dp2): output2.append(n2) if i == 4: i1 = iter(dp1) self.assertEqual(list(range(1, 10, 2)), output2) # Test Case: DataPipe reset when some of it has been read dp1, dp2 = input_dp.demux(num_instances=2, classifier_fn=lambda x: x % 2) output1, output2 = [], [] for n1, n2 in zip(dp1, dp2): output1.append(n1) output2.append(n2) if n1 == 4: break with warnings.catch_warnings(record=True) as wa: i1 = iter(dp1) # Reset all child DataPipes self.assertEqual(len(wa), 1) self.assertRegex(str(wa[0].message), r"Some child DataPipes are not exhausted") for n1, n2 in zip(dp1, dp2): output1.append(n1) output2.append(n2) self.assertEqual([0, 2, 4] + list(range(0, 10, 2)), output1) self.assertEqual([1, 3, 5] + list(range(1, 10, 2)), output2) # Test Case: DataPipe reset, even when not all child DataPipes are exhausted dp1, dp2 = input_dp.demux(num_instances=2, classifier_fn=lambda x: x % 2) output1 = list(dp1) self.assertEqual(list(range(0, 10, 2)), output1) with warnings.catch_warnings(record=True) as wa: self.assertEqual(list(range(0, 10, 2)), list(dp1)) # Reset even when dp2 is not read self.assertEqual(len(wa), 1) self.assertRegex(str(wa[0].message), r"Some child DataPipes are not exhausted") output2 = [] for i, n2 in enumerate(dp2): output2.append(n2) if i == 1: self.assertEqual(list(range(1, 5, 2)), output2) with warnings.catch_warnings(record=True) as wa: self.assertEqual(list(range(0, 10, 2)), list(dp1)) # Can reset even when dp2 is partially read self.assertEqual(len(wa), 1) self.assertRegex(str(wa[0].message), r"Some child DataPipes are not exhausted") break output2 = list(dp2) # output2 has to read from beginning again self.assertEqual(list(range(1, 10, 2)), output2) # Test Case: drop_none = True dp1, dp2 = input_dp.demux(num_instances=2, classifier_fn=lambda x: x % 2 if x % 5 != 0 else None, drop_none=True) self.assertEqual([2, 4, 6, 8], list(dp1)) self.assertEqual([1, 3, 7, 9], list(dp2)) # Test Case: drop_none = False dp1, dp2 = input_dp.demux(num_instances=2, classifier_fn=lambda x: x % 2 if x % 5 != 0 else None, drop_none=False) it1 = iter(dp1) with self.assertRaises(ValueError): next(it1) # Test Case: __len__ not implemented dp1, dp2 = input_dp.demux(num_instances=2, classifier_fn=lambda x: x % 2) with self.assertRaises(TypeError): len(dp1) # It is not implemented as we do not know length for each child in advance with self.assertRaises(TypeError): len(dp2) @suppress_warnings # Suppress warning for lambda fn def test_map_datapipe(self): input_dp = IDP(range(10)) def fn(item, dtype=torch.float, *, sum=False): data = torch.tensor(item, dtype=dtype) return data if not sum else data.sum() map_dp = input_dp.map(fn) self.assertEqual(len(input_dp), len(map_dp)) for x, y in zip(map_dp, input_dp): self.assertEqual(x, torch.tensor(y, dtype=torch.float)) map_dp = input_dp.map(fn=fn, fn_args=(torch.int, ), fn_kwargs={'sum': True}) self.assertEqual(len(input_dp), len(map_dp)) for x, y in zip(map_dp, input_dp): self.assertEqual(x, torch.tensor(y, dtype=torch.int).sum()) from functools import partial map_dp = input_dp.map(partial(fn, dtype=torch.int, sum=True)) self.assertEqual(len(input_dp), len(map_dp)) for x, y in zip(map_dp, input_dp): self.assertEqual(x, torch.tensor(y, dtype=torch.int).sum()) input_dp_nl = IDP_NoLen(range(10)) map_dp_nl = input_dp_nl.map(lambda x: x) with self.assertRaisesRegex(TypeError, r"instance doesn't have valid length$"): len(map_dp_nl) for x, y in zip(map_dp_nl, input_dp_nl): self.assertEqual(x, torch.tensor(y, dtype=torch.float)) @suppress_warnings # Suppress warning for lambda fn def test_map_tuple_list_with_col_datapipe(self): def fn_11(d): return -d def fn_1n(d): return -d, d def fn_n1(d0, d1): return d0 + d1 def fn_nn(d0, d1): return -d0, -d1, d0 + d1 def _helper(ref_fn, fn, input_col=None, output_col=None): for constr in (list, tuple): datapipe = IDP([constr((0, 1, 2)), constr((3, 4, 5)), constr((6, 7, 8))]) res_dp = datapipe.map(fn, input_col, output_col) ref_dp = datapipe.map(ref_fn) self.assertEqual(list(res_dp), list(ref_dp)) # Reset self.assertEqual(list(res_dp), list(ref_dp)) # Replacing with one input column and default output column _helper(lambda data: (data[0], -data[1], data[2]), fn_11, 1) _helper(lambda data: (data[0], (-data[1], data[1]), data[2]), fn_1n, 1) # The index of input column is out of range with self.assertRaises(IndexError): _helper(None, fn_1n, 3) # Unmatched input columns with fn arguments with self.assertRaises(TypeError): _helper(None, fn_n1, 1) # Replacing with multiple input columns and default output column (the left-most input column) _helper(lambda data: (data[1], data[2] + data[0]), fn_n1, [2, 0]) _helper(lambda data: (data[0], (-data[2], -data[1], data[2] + data[1])), fn_nn, [2, 1]) # output_col can only be specified when input_col is not None with self.assertRaises(ValueError): _helper(None, fn_n1, None, 1) # output_col can only be single-element list or tuple with self.assertRaises(ValueError): _helper(None, fn_n1, None, [0, 1]) # Single-element list as output_col _helper(lambda data: (-data[1], data[1], data[2]), fn_11, 1, [0]) # Replacing with one input column and single specified output column _helper(lambda data: (-data[1], data[1], data[2]), fn_11, 1, 0) _helper(lambda data: (data[0], data[1], (-data[1], data[1])), fn_1n, 1, 2) # The index of output column is out of range with self.assertRaises(IndexError): _helper(None, fn_1n, 1, 3) _helper(lambda data: (data[0], data[0] + data[2], data[2]), fn_n1, [0, 2], 1) _helper(lambda data: ((-data[1], -data[2], data[1] + data[2]), data[1], data[2]), fn_nn, [1, 2], 0) # Appending the output at the end _helper(lambda data: (*data, -data[1]), fn_11, 1, -1) _helper(lambda data: (*data, (-data[1], data[1])), fn_1n, 1, -1) _helper(lambda data: (*data, data[0] + data[2]), fn_n1, [0, 2], -1) _helper(lambda data: (*data, (-data[1], -data[2], data[1] + data[2])), fn_nn, [1, 2], -1) @suppress_warnings # Suppress warning for lambda fn def test_map_dict_with_col_datapipe(self): def fn_11(d): return -d def fn_1n(d): return -d, d def fn_n1(d0, d1): return d0 + d1 def fn_nn(d0, d1): return -d0, -d1, d0 + d1 # Prevent modification in-place to support resetting def _dict_update(data, newdata, remove_idx=None): _data = dict(data) _data.update(newdata) if remove_idx: for idx in remove_idx: del _data[idx] return _data def _helper(ref_fn, fn, input_col=None, output_col=None): datapipe = IDP([{"x": 0, "y": 1, "z": 2}, {"x": 3, "y": 4, "z": 5}, {"x": 6, "y": 7, "z": 8}]) res_dp = datapipe.map(fn, input_col, output_col) ref_dp = datapipe.map(ref_fn) self.assertEqual(list(res_dp), list(ref_dp)) # Reset self.assertEqual(list(res_dp), list(ref_dp)) # Replacing with one input column and default output column _helper(lambda data: _dict_update(data, {"y": -data["y"]}), fn_11, "y") _helper(lambda data: _dict_update(data, {"y": (-data["y"], data["y"])}), fn_1n, "y") # The key of input column is not in dict with self.assertRaises(KeyError): _helper(None, fn_1n, "a") # Unmatched input columns with fn arguments with self.assertRaises(TypeError): _helper(None, fn_n1, "y") # Replacing with multiple input columns and default output column (the left-most input column) _helper(lambda data: _dict_update(data, {"z": data["x"] + data["z"]}, ["x"]), fn_n1, ["z", "x"]) _helper(lambda data: _dict_update(data, {"z": (-data["z"], -data["y"], data["y"] + data["z"])}, ["y"]), fn_nn, ["z", "y"]) # output_col can only be specified when input_col is not None with self.assertRaises(ValueError): _helper(None, fn_n1, None, "x") # output_col can only be single-element list or tuple with self.assertRaises(ValueError): _helper(None, fn_n1, None, ["x", "y"]) # Single-element list as output_col _helper(lambda data: _dict_update(data, {"x": -data["y"]}), fn_11, "y", ["x"]) # Replacing with one input column and single specified output column _helper(lambda data: _dict_update(data, {"x": -data["y"]}), fn_11, "y", "x") _helper(lambda data: _dict_update(data, {"z": (-data["y"], data["y"])}), fn_1n, "y", "z") _helper(lambda data: _dict_update(data, {"y": data["x"] + data["z"]}), fn_n1, ["x", "z"], "y") _helper(lambda data: _dict_update(data, {"x": (-data["y"], -data["z"], data["y"] + data["z"])}), fn_nn, ["y", "z"], "x") # Adding new key to dict for the output _helper(lambda data: _dict_update(data, {"a": -data["y"]}), fn_11, "y", "a") _helper(lambda data: _dict_update(data, {"a": (-data["y"], data["y"])}), fn_1n, "y", "a") _helper(lambda data: _dict_update(data, {"a": data["x"] + data["z"]}), fn_n1, ["x", "z"], "a") _helper(lambda data: _dict_update(data, {"a": (-data["y"], -data["z"], data["y"] + data["z"])}), fn_nn, ["y", "z"], "a") # TODO(VitalyFedyunin): If dill installed this test fails def _test_map_datapipe_nested_level(self): input_dp = IDP([list(range(10)) for _ in range(3)]) def fn(item, *, dtype=torch.float): return torch.tensor(item, dtype=dtype) with warnings.catch_warnings(record=True) as wa: map_dp = input_dp.map(lambda ls: ls * 2, nesting_level=0) self.assertEqual(len(wa), 1) self.assertRegex(str(wa[0].message), r"^Lambda function is not supported for pickle") self.assertEqual(len(input_dp), len(map_dp)) for x, y in zip(map_dp, input_dp): self.assertEqual(x, y * 2) map_dp = input_dp.map(fn, nesting_level=1) self.assertEqual(len(input_dp), len(map_dp)) for x, y in zip(map_dp, input_dp): self.assertEqual(len(x), len(y)) for a, b in zip(x, y): self.assertEqual(a, torch.tensor(b, dtype=torch.float)) map_dp = input_dp.map(fn, nesting_level=-1) self.assertEqual(len(input_dp), len(map_dp)) for x, y in zip(map_dp, input_dp): self.assertEqual(len(x), len(y)) for a, b in zip(x, y): self.assertEqual(a, torch.tensor(b, dtype=torch.float)) map_dp = input_dp.map(fn, nesting_level=4) with self.assertRaises(IndexError): list(map_dp) with self.assertRaises(ValueError): input_dp.map(fn, nesting_level=-2) def test_collate_datapipe(self): arrs = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] input_dp = IDP(arrs) def _collate_fn(batch): return torch.tensor(sum(batch), dtype=torch.float) collate_dp = input_dp.collate(collate_fn=_collate_fn) self.assertEqual(len(input_dp), len(collate_dp)) for x, y in zip(collate_dp, input_dp): self.assertEqual(x, torch.tensor(sum(y), dtype=torch.float)) input_dp_nl = IDP_NoLen(arrs) collate_dp_nl = input_dp_nl.collate() with self.assertRaisesRegex(TypeError, r"instance doesn't have valid length$"): len(collate_dp_nl) for x, y in zip(collate_dp_nl, input_dp_nl): self.assertEqual(x, torch.tensor(y)) def test_batch_datapipe(self): arrs = list(range(10)) input_dp = IDP(arrs) with self.assertRaises(AssertionError): input_dp.batch(batch_size=0) # Default not drop the last batch bs = 3 batch_dp = input_dp.batch(batch_size=bs) self.assertEqual(len(batch_dp), 4) for i, batch in enumerate(batch_dp): self.assertEqual(len(batch), 1 if i == 3 else bs) self.assertEqual(batch, arrs[i * bs: i * bs + len(batch)]) # Drop the last batch bs = 4 batch_dp = input_dp.batch(batch_size=bs, drop_last=True) self.assertEqual(len(batch_dp), 2) for i, batch in enumerate(batch_dp): self.assertEqual(len(batch), bs) self.assertEqual(batch, arrs[i * bs: i * bs + len(batch)]) input_dp_nl = IDP_NoLen(range(10)) batch_dp_nl = input_dp_nl.batch(batch_size=2) with self.assertRaisesRegex(TypeError, r"instance doesn't have valid length$"): len(batch_dp_nl) def test_unbatch_datapipe(self): target_length = 6 prebatch_dp = IDP(range(target_length)) input_dp = prebatch_dp.batch(3) unbatch_dp = input_dp.unbatch() self.assertEqual(len(list(unbatch_dp)), target_length) for i, res in zip(prebatch_dp, unbatch_dp): self.assertEqual(i, res) input_dp = IDP([[0, 1, 2], [3, 4, 5]]) unbatch_dp = input_dp.unbatch() self.assertEqual(len(list(unbatch_dp)), target_length) for i, res in zip(prebatch_dp, unbatch_dp): self.assertEqual(i, res) input_dp = IDP([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) unbatch_dp = input_dp.unbatch() expected_dp = [[0, 1], [2, 3], [4, 5], [6, 7]] self.assertEqual(len(list(unbatch_dp)), 4) for i, res in zip(expected_dp, unbatch_dp): self.assertEqual(i, res) unbatch_dp = input_dp.unbatch(unbatch_level=2) expected_dp2 = [0, 1, 2, 3, 4, 5, 6, 7] self.assertEqual(len(list(unbatch_dp)), 8) for i, res in zip(expected_dp2, unbatch_dp): self.assertEqual(i, res) unbatch_dp = input_dp.unbatch(unbatch_level=-1) self.assertEqual(len(list(unbatch_dp)), 8) for i, res in zip(expected_dp2, unbatch_dp): self.assertEqual(i, res) input_dp = IDP([[0, 1, 2], [3, 4, 5]]) with self.assertRaises(ValueError): unbatch_dp = input_dp.unbatch(unbatch_level=-2) for i in unbatch_dp: print(i) with self.assertRaises(IndexError): unbatch_dp = input_dp.unbatch(unbatch_level=5) for i in unbatch_dp: print(i) def test_bucket_batch_datapipe(self): input_dp = IDP(range(20)) with self.assertRaises(AssertionError): dp.iter.BucketBatcher(input_dp, batch_size=0) input_dp_nl = IDP_NoLen(range(20)) bucket_dp_nl = dp.iter.BucketBatcher(input_dp_nl, batch_size=7) with self.assertRaisesRegex(TypeError, r"instance doesn't have valid length$"): len(bucket_dp_nl) def _helper(**kwargs): data_len = 100 arrs = list(range(data_len)) random.shuffle(arrs) input_dp = IDP(arrs) bucket_dp = dp.iter.BucketBatcher(input_dp, **kwargs) self.assertEqual(len(bucket_dp), data_len // 3 if kwargs['drop_last'] else data_len // 3 + 1) def _verify_bucket_sorted(bucket): # Sort batch in a bucket bucket = sorted(bucket, key=lambda x: x[0]) flat = [item for batch in bucket for item in batch] # Elements in the bucket should be sorted self.assertEqual(flat, sorted(flat)) batch_num = kwargs['batch_num'] if 'batch_num' in kwargs else 100 bucket = [] for idx, d in enumerate(bucket_dp): self.assertEqual(d, sorted(d)) bucket.append(d) if idx % batch_num == batch_num - 1: _verify_bucket_sorted(bucket) bucket = [] _verify_bucket_sorted(bucket) def _sort_fn(data): return sorted(data) # In-batch shuffle _helper(batch_size=3, drop_last=False, batch_num=5, sort_key=_sort_fn) _helper(batch_size=3, drop_last=False, batch_num=2, bucket_num=2, sort_key=_sort_fn) _helper(batch_size=3, drop_last=True, batch_num=2, sort_key=_sort_fn) _helper(batch_size=3, drop_last=True, batch_num=2, bucket_num=2, sort_key=_sort_fn) def test_filter_datapipe(self): input_ds = IDP(range(10)) def _filter_fn(data, val, clip=False): if clip: return data >= val return True filter_dp = input_ds.filter(filter_fn=_filter_fn, fn_args=(5, )) for data, exp in zip(filter_dp, range(10)): self.assertEqual(data, exp) filter_dp = input_ds.filter(filter_fn=_filter_fn, fn_kwargs={'val': 5, 'clip': True}) for data, exp in zip(filter_dp, range(5, 10)): self.assertEqual(data, exp) with self.assertRaisesRegex(TypeError, r"has no len"): len(filter_dp) def _non_bool_fn(data): return 1 filter_dp = input_ds.filter(filter_fn=_non_bool_fn) with self.assertRaises(ValueError): temp = list(filter_dp) def test_filter_datapipe_nested_list(self): input_ds = IDP(range(10)).batch(5) def _filter_fn(data, val): return data >= val filter_dp = input_ds.filter(nesting_level=-1, filter_fn=_filter_fn, fn_kwargs={'val': 5}) expected_dp1 = [[5, 6, 7, 8, 9]] self.assertEqual(len(list(filter_dp)), len(expected_dp1)) for data, exp in zip(filter_dp, expected_dp1): self.assertEqual(data, exp) filter_dp = input_ds.filter(nesting_level=-1, drop_empty_batches=False, filter_fn=_filter_fn, fn_kwargs={'val': 5}) expected_dp2: List[List[int]] = [[], [5, 6, 7, 8, 9]] self.assertEqual(len(list(filter_dp)), len(expected_dp2)) for data, exp in zip(filter_dp, expected_dp2): self.assertEqual(data, exp) with self.assertRaises(IndexError): filter_dp = input_ds.filter(nesting_level=5, filter_fn=_filter_fn, fn_kwargs={'val': 5}) temp = list(filter_dp) input_ds = IDP(range(10)).batch(3) filter_dp = input_ds.filter(lambda ls: len(ls) >= 3) expected_dp3: List[List[int]] = [[0, 1, 2], [3, 4, 5], [6, 7, 8]] self.assertEqual(len(list(filter_dp)), len(expected_dp3)) for data, exp in zip(filter_dp, expected_dp3): self.assertEqual(data, exp) input_ds = IDP([[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [1, 2, 3]]]) filter_dp = input_ds.filter(lambda x: x > 3, nesting_level=-1) expected_dp4 = [[[4, 5]], [[6, 7, 8]]] self.assertEqual(len(list(filter_dp)), len(expected_dp4)) for data2, exp2 in zip(filter_dp, expected_dp4): self.assertEqual(data2, exp2) input_ds = IDP([[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [1, 2, 3]]]) filter_dp = input_ds.filter(lambda x: x > 7, nesting_level=-1) expected_dp5 = [[[8]]] self.assertEqual(len(list(filter_dp)), len(expected_dp5)) for data2, exp2 in zip(filter_dp, expected_dp5): self.assertEqual(data2, exp2) input_ds = IDP([[[0, 1], [3, 4]], [[6, 7, 8], [1, 2, 3]]]) filter_dp = input_ds.filter(lambda ls: len(ls) >= 3, nesting_level=1) expected_dp6 = [[[6, 7, 8], [1, 2, 3]]] self.assertEqual(len(list(filter_dp)), len(expected_dp6)) for data2, exp2 in zip(filter_dp, expected_dp6): self.assertEqual(data2, exp2) def test_sampler_datapipe(self): input_dp = IDP(range(10)) # Default SequentialSampler sampled_dp = dp.iter.Sampler(input_dp) # type: ignore[var-annotated] self.assertEqual(len(sampled_dp), 10) for i, x in enumerate(sampled_dp): self.assertEqual(x, i) # RandomSampler random_sampled_dp = dp.iter.Sampler(input_dp, sampler=RandomSampler, sampler_kwargs={'replacement': True}) # type: ignore[var-annotated] # noqa: B950 # Requires `__len__` to build SamplerDataPipe input_dp_nolen = IDP_NoLen(range(10)) with self.assertRaises(AssertionError): sampled_dp = dp.iter.Sampler(input_dp_nolen) def test_shuffle_datapipe(self): exp = list(range(20)) input_ds = IDP(exp) with self.assertRaises(AssertionError): shuffle_dp = input_ds.shuffle(buffer_size=0) for bs in (5, 20, 25): shuffle_dp = input_ds.shuffle(buffer_size=bs) self.assertEqual(len(shuffle_dp), len(input_ds)) random.seed(123) res = list(shuffle_dp) self.assertEqual(sorted(res), exp) # Test Deterministic for num_workers in (0, 1): random.seed(123) dl = DataLoader(shuffle_dp, num_workers=num_workers, worker_init_fn=_worker_init_fn) dl_res = list(dl) self.assertEqual(res, dl_res) shuffle_dp_nl = IDP_NoLen(range(20)).shuffle(buffer_size=5) with self.assertRaisesRegex(TypeError, r"instance doesn't have valid length$"): len(shuffle_dp_nl) def test_zip_datapipe(self): with self.assertRaises(TypeError): dp.iter.Zipper(IDP(range(10)), list(range(10))) # type: ignore[arg-type] zipped_dp = dp.iter.Zipper(IDP(range(10)), IDP_NoLen(range(5))) # type: ignore[var-annotated] with self.assertRaisesRegex(TypeError, r"instance doesn't have valid length$"): len(zipped_dp) exp = list((i, i) for i in range(5)) self.assertEqual(list(zipped_dp), exp) zipped_dp = dp.iter.Zipper(IDP(range(10)), IDP(range(5))) self.assertEqual(len(zipped_dp), 5) self.assertEqual(list(zipped_dp), exp) # Reset self.assertEqual(list(zipped_dp), exp) class TestFunctionalMapDataPipe(TestCase): # TODO(VitalyFedyunin): If dill installed this test fails def _test_picklable(self): arr = range(10) picklable_datapipes: List[ Tuple[Type[MapDataPipe], MapDataPipe, Tuple, Dict[str, Any]] ] = [ (dp.map.Mapper, MDP(arr), (), {}), (dp.map.Mapper, MDP(arr), (_fake_fn, (0,), {'test': True}), {}), ] for dpipe, input_dp, dp_args, dp_kwargs in picklable_datapipes: p = pickle.dumps(dpipe(input_dp, *dp_args, **dp_kwargs)) # type: ignore[call-arg] unpicklable_datapipes: List[ Tuple[Type[MapDataPipe], MapDataPipe, Tuple, Dict[str, Any]] ] = [ (dp.map.Mapper, MDP(arr), (lambda x: x,), {}), ] for dpipe, input_dp, dp_args, dp_kwargs in unpicklable_datapipes: with warnings.catch_warnings(record=True) as wa: datapipe = dpipe(input_dp, *dp_args, **dp_kwargs) # type: ignore[call-arg] self.assertEqual(len(wa), 1) self.assertRegex( str(wa[0].message), r"^Lambda function is not supported for pickle" ) with self.assertRaises(AttributeError): p = pickle.dumps(datapipe) def test_concat_datapipe(self): input_dp1 = MDP(range(10)) input_dp2 = MDP(range(5)) with self.assertRaisesRegex(ValueError, r"Expected at least one DataPipe"): dp.map.Concater() with self.assertRaisesRegex(TypeError, r"Expected all inputs to be `MapDataPipe`"): dp.map.Concater(input_dp1, ()) # type: ignore[arg-type] concat_dp = input_dp1.concat(input_dp2) self.assertEqual(len(concat_dp), 15) for index in range(15): self.assertEqual(concat_dp[index], (list(range(10)) + list(range(5)))[index]) self.assertEqual(list(concat_dp), list(range(10)) + list(range(5))) def test_map_datapipe(self): arr = range(10) input_dp = MDP(arr) def fn(item, dtype=torch.float, *, sum=False): data = torch.tensor(item, dtype=dtype) return data if not sum else data.sum() map_dp = input_dp.map(fn) self.assertEqual(len(input_dp), len(map_dp)) for index in arr: self.assertEqual( map_dp[index], torch.tensor(input_dp[index], dtype=torch.float) ) map_dp = input_dp.map(fn=fn, fn_args=(torch.int,), fn_kwargs={'sum': True}) self.assertEqual(len(input_dp), len(map_dp)) for index in arr: self.assertEqual( map_dp[index], torch.tensor(input_dp[index], dtype=torch.int).sum() ) from functools import partial map_dp = input_dp.map(partial(fn, dtype=torch.int, sum=True)) self.assertEqual(len(input_dp), len(map_dp)) for index in arr: self.assertEqual( map_dp[index], torch.tensor(input_dp[index], dtype=torch.int).sum() ) def test_mux_datapipe(self): # Test Case: Elements are yielded one at a time from each DataPipe, until they are all exhausted input_dp1 = IDP(range(4)) input_dp2 = IDP(range(4, 8)) input_dp3 = IDP(range(8, 12)) output_dp = input_dp1.mux(input_dp2, input_dp3) expected_output = [0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11] self.assertEqual(len(expected_output), len(output_dp)) self.assertEqual(expected_output, list(output_dp)) # Test Case: Uneven input Data Pipes input_dp1 = IDP([1, 2, 3, 4]) input_dp2 = IDP([10]) input_dp3 = IDP([100, 200, 300]) output_dp = input_dp1.mux(input_dp2, input_dp3) expected_output = [1, 10, 100, 2, 200, 3, 300, 4] self.assertEqual(len(expected_output), len(output_dp)) self.assertEqual(expected_output, list(output_dp)) # Test Case: Empty Data Pipe input_dp1 = IDP([0, 1, 2, 3]) input_dp2 = IDP([]) output_dp = input_dp1.mux(input_dp2) self.assertEqual(len(input_dp1), len(output_dp)) self.assertEqual(list(input_dp1), list(output_dp)) # Test Case: raises TypeError when __len__ is called and an input doesn't have __len__ input_dp1 = IDP(range(10)) input_dp_no_len = IDP_NoLen(range(10)) output_dp = input_dp1.mux(input_dp_no_len) with self.assertRaises(TypeError): len(output_dp) # Metaclass conflict for Python 3.6 # Multiple inheritance with NamedTuple is not supported for Python 3.9 _generic_namedtuple_allowed = sys.version_info >= (3, 7) and sys.version_info < (3, 9) if _generic_namedtuple_allowed: class InvalidData(Generic[T_co], NamedTuple): name: str data: T_co class TestTyping(TestCase): def test_subtype(self): from torch.utils.data._typing import issubtype basic_type = (int, str, bool, float, complex, list, tuple, dict, set, T_co) for t in basic_type: self.assertTrue(issubtype(t, t)) self.assertTrue(issubtype(t, Any)) if t == T_co: self.assertTrue(issubtype(Any, t)) else: self.assertFalse(issubtype(Any, t)) for t1, t2 in itertools.product(basic_type, basic_type): if t1 == t2 or t2 == T_co: self.assertTrue(issubtype(t1, t2)) else: self.assertFalse(issubtype(t1, t2)) T = TypeVar('T', int, str) S = TypeVar('S', bool, Union[str, int], Tuple[int, T]) # type: ignore[valid-type] types = ((int, Optional[int]), (List, Union[int, list]), (Tuple[int, str], S), (Tuple[int, str], tuple), (T, S), (S, T_co), (T, Union[S, Set])) for sub, par in types: self.assertTrue(issubtype(sub, par)) self.assertFalse(issubtype(par, sub)) subscriptable_types = { List: 1, Tuple: 2, # use 2 parameters Set: 1, Dict: 2, } for subscript_type, n in subscriptable_types.items(): for ts in itertools.combinations(types, n): subs, pars = zip(*ts) sub = subscript_type[subs] # type: ignore[index] par = subscript_type[pars] # type: ignore[index] self.assertTrue(issubtype(sub, par)) self.assertFalse(issubtype(par, sub)) # Non-recursive check self.assertTrue(issubtype(par, sub, recursive=False)) def test_issubinstance(self): from torch.utils.data._typing import issubinstance basic_data = (1, '1', True, 1., complex(1., 0.)) basic_type = (int, str, bool, float, complex) S = TypeVar('S', bool, Union[str, int]) for d in basic_data: self.assertTrue(issubinstance(d, Any)) self.assertTrue(issubinstance(d, T_co)) if type(d) in (bool, int, str): self.assertTrue(issubinstance(d, S)) else: self.assertFalse(issubinstance(d, S)) for t in basic_type: if type(d) == t: self.assertTrue(issubinstance(d, t)) else: self.assertFalse(issubinstance(d, t)) # list/set dt = (([1, '1', 2], List), (set({1, '1', 2}), Set)) for d, t in dt: self.assertTrue(issubinstance(d, t)) self.assertTrue(issubinstance(d, t[T_co])) # type: ignore[index] self.assertFalse(issubinstance(d, t[int])) # type: ignore[index] # dict d = dict({'1': 1, '2': 2.}) self.assertTrue(issubinstance(d, Dict)) self.assertTrue(issubinstance(d, Dict[str, T_co])) self.assertFalse(issubinstance(d, Dict[str, int])) # tuple d = (1, '1', 2) self.assertTrue(issubinstance(d, Tuple)) self.assertTrue(issubinstance(d, Tuple[int, str, T_co])) self.assertFalse(issubinstance(d, Tuple[int, Any])) self.assertFalse(issubinstance(d, Tuple[int, int, int])) # Static checking annotation def test_compile_time(self): with self.assertRaisesRegex(TypeError, r"Expected 'Iterator' as the return"): class InvalidDP1(IterDataPipe[int]): def __iter__(self) -> str: # type: ignore[misc, override] yield 0 with self.assertRaisesRegex(TypeError, r"Expected return type of '__iter__'"): class InvalidDP2(IterDataPipe[Tuple]): def __iter__(self) -> Iterator[int]: # type: ignore[override] yield 0 with self.assertRaisesRegex(TypeError, r"Expected return type of '__iter__'"): class InvalidDP3(IterDataPipe[Tuple[int, str]]): def __iter__(self) -> Iterator[tuple]: # type: ignore[override] yield (0, ) if _generic_namedtuple_allowed: with self.assertRaisesRegex(TypeError, r"is not supported by Python typing"): class InvalidDP4(IterDataPipe["InvalidData[int]"]): # type: ignore[type-arg, misc] pass class DP1(IterDataPipe[Tuple[int, str]]): def __init__(self, length): self.length = length def __iter__(self) -> Iterator[Tuple[int, str]]: for d in range(self.length): yield d, str(d) self.assertTrue(issubclass(DP1, IterDataPipe)) dp1 = DP1(10) self.assertTrue(DP1.type.issubtype(dp1.type) and dp1.type.issubtype(DP1.type)) dp2 = DP1(5) self.assertEqual(dp1.type, dp2.type) with self.assertRaisesRegex(TypeError, r"is not a generic class"): class InvalidDP5(DP1[tuple]): # type: ignore[type-arg] def __iter__(self) -> Iterator[tuple]: # type: ignore[override] yield (0, ) class DP2(IterDataPipe[T_co]): def __iter__(self) -> Iterator[T_co]: for d in range(10): yield d # type: ignore[misc] self.assertTrue(issubclass(DP2, IterDataPipe)) dp1 = DP2() # type: ignore[assignment] self.assertTrue(DP2.type.issubtype(dp1.type) and dp1.type.issubtype(DP2.type)) dp2 = DP2() # type: ignore[assignment] self.assertEqual(dp1.type, dp2.type) class DP3(IterDataPipe[Tuple[T_co, str]]): r""" DataPipe without fixed type with __init__ function""" def __init__(self, datasource): self.datasource = datasource def __iter__(self) -> Iterator[Tuple[T_co, str]]: for d in self.datasource: yield d, str(d) self.assertTrue(issubclass(DP3, IterDataPipe)) dp1 = DP3(range(10)) # type: ignore[assignment] self.assertTrue(DP3.type.issubtype(dp1.type) and dp1.type.issubtype(DP3.type)) dp2 = DP3(5) # type: ignore[assignment] self.assertEqual(dp1.type, dp2.type) class DP4(IterDataPipe[tuple]): r""" DataPipe without __iter__ annotation""" def __iter__(self): raise NotImplementedError self.assertTrue(issubclass(DP4, IterDataPipe)) dp = DP4() self.assertTrue(dp.type.param == tuple) class DP5(IterDataPipe): r""" DataPipe without type annotation""" def __iter__(self) -> Iterator[str]: raise NotImplementedError self.assertTrue(issubclass(DP5, IterDataPipe)) dp = DP5() # type: ignore[assignment] from torch.utils.data._typing import issubtype self.assertTrue(issubtype(dp.type.param, Any) and issubtype(Any, dp.type.param)) class DP6(IterDataPipe[int]): r""" DataPipe with plain Iterator""" def __iter__(self) -> Iterator: raise NotImplementedError self.assertTrue(issubclass(DP6, IterDataPipe)) dp = DP6() # type: ignore[assignment] self.assertTrue(dp.type.param == int) class DP7(IterDataPipe[Awaitable[T_co]]): r""" DataPipe with abstract base class""" self.assertTrue(issubclass(DP6, IterDataPipe)) self.assertTrue(DP7.type.param == Awaitable[T_co]) class DP8(DP7[str]): r""" DataPipe subclass from a DataPipe with abc type""" self.assertTrue(issubclass(DP8, IterDataPipe)) self.assertTrue(DP8.type.param == Awaitable[str]) def test_construct_time(self): class DP0(IterDataPipe[Tuple]): @argument_validation def __init__(self, dp: IterDataPipe): self.dp = dp def __iter__(self) -> Iterator[Tuple]: for d in self.dp: yield d, str(d) class DP1(IterDataPipe[int]): @argument_validation def __init__(self, dp: IterDataPipe[Tuple[int, str]]): self.dp = dp def __iter__(self) -> Iterator[int]: for a, b in self.dp: yield a # Non-DataPipe input with DataPipe hint datasource = [(1, '1'), (2, '2'), (3, '3')] with self.assertRaisesRegex(TypeError, r"Expected argument 'dp' as a IterDataPipe"): dp = DP0(datasource) dp = DP0(IDP(range(10))) with self.assertRaisesRegex(TypeError, r"Expected type of argument 'dp' as a subtype"): dp = DP1(dp) def test_runtime(self): class DP(IterDataPipe[Tuple[int, T_co]]): def __init__(self, datasource): self.ds = datasource @runtime_validation def __iter__(self) -> Iterator[Tuple[int, T_co]]: for d in self.ds: yield d dss = ([(1, '1'), (2, '2')], [(1, 1), (2, '2')]) for ds in dss: dp = DP(ds) # type: ignore[var-annotated] self.assertEqual(list(dp), ds) # Reset __iter__ self.assertEqual(list(dp), ds) dss = ([(1, 1), ('2', 2)], # type: ignore[assignment, list-item] [[1, '1'], [2, '2']], # type: ignore[list-item] [1, '1', 2, '2']) for ds in dss: dp = DP(ds) with self.assertRaisesRegex(RuntimeError, r"Expected an instance as subtype"): list(dp) with runtime_validation_disabled(): self.assertEqual(list(dp), ds) with runtime_validation_disabled(): self.assertEqual(list(dp), ds) with self.assertRaisesRegex(RuntimeError, r"Expected an instance as subtype"): list(dp) def test_reinforce(self): T = TypeVar('T', int, str) class DP(IterDataPipe[T]): def __init__(self, ds): self.ds = ds @runtime_validation def __iter__(self) -> Iterator[T]: for d in self.ds: yield d ds = list(range(10)) # Valid type reinforcement dp = DP(ds).reinforce_type(int) self.assertTrue(dp.type, int) self.assertEqual(list(dp), ds) # Invalid type with self.assertRaisesRegex(TypeError, r"'expected_type' must be a type"): dp = DP(ds).reinforce_type(1) # Type is not subtype with self.assertRaisesRegex(TypeError, r"Expected 'expected_type' as subtype of"): dp = DP(ds).reinforce_type(float) # Invalid data at runtime dp = DP(ds).reinforce_type(str) with self.assertRaisesRegex(RuntimeError, r"Expected an instance as subtype"): list(dp) # Context Manager to disable the runtime validation with runtime_validation_disabled(): self.assertEqual(list(d for d in dp), ds) class NumbersDataset(IterDataPipe): def __init__(self, size=10): self.size = size def __iter__(self): for i in range(self.size): yield i class TestGraph(TestCase): @skipIfNoDill def test_simple_traverse(self): numbers_dp = NumbersDataset(size=50) mapped_dp = numbers_dp.map(lambda x: x * 10) graph = torch.utils.data.graph.traverse(mapped_dp) expected: Dict[Any, Any] = {mapped_dp: {numbers_dp: {}}} self.assertEqual(expected, graph) @skipIfNoDill def test_traverse_forked(self): numbers_dp = NumbersDataset(size=50) dp0, dp1, dp2 = numbers_dp.fork(num_instances=3) dp0_upd = dp0.map(lambda x: x * 10) dp1_upd = dp1.filter(lambda x: x % 3 == 1) combined_dp = dp0_upd.mux(dp1_upd, dp2) graph = torch.utils.data.graph.traverse(combined_dp) expected = {combined_dp: {dp0_upd: {dp0: {dp0.main_datapipe: {dp0.main_datapipe.main_datapipe: {}}}}, dp1_upd: {dp1: {dp1.main_datapipe: {dp1.main_datapipe.main_datapipe: {}}}}, dp2: {dp2.main_datapipe: {dp2.main_datapipe.main_datapipe: {}}}}} self.assertEqual(expected, graph) class TestSharding(TestCase): def _get_pipeline(self): numbers_dp = NumbersDataset(size=10) dp0, dp1 = numbers_dp.fork(num_instances=2) dp0_upd = dp0.map(lambda x: x * 10) dp1_upd = dp1.filter(lambda x: x % 3 == 1) combined_dp = dp0_upd.mux(dp1_upd) return combined_dp @skipIfNoDill def test_simple_sharding(self): sharded_dp = self._get_pipeline().sharding_filter() torch.utils.data.sharding.apply_sharding(sharded_dp, 3, 1) items = list(sharded_dp) self.assertEqual([1, 20, 40, 70], items) all_items = list(self._get_pipeline()) items = [] for i in range(3): sharded_dp = self._get_pipeline().sharding_filter() torch.utils.data.sharding.apply_sharding(sharded_dp, 3, i) items += list(sharded_dp) self.assertEqual(sorted(all_items), sorted(items)) def test_sharding_length(self): numbers_dp = IDP(range(13)) sharded_dp0 = numbers_dp.sharding_filter() torch.utils.data.sharding.apply_sharding(sharded_dp0, 3, 0) sharded_dp1 = numbers_dp.sharding_filter() torch.utils.data.sharding.apply_sharding(sharded_dp1, 3, 1) sharded_dp2 = numbers_dp.sharding_filter() torch.utils.data.sharding.apply_sharding(sharded_dp2, 3, 2) self.assertEqual(13, len(numbers_dp)) self.assertEqual(5, len(sharded_dp0)) self.assertEqual(4, len(sharded_dp1)) self.assertEqual(4, len(sharded_dp2)) numbers_dp = IDP(range(1)) sharded_dp0 = numbers_dp.sharding_filter() torch.utils.data.sharding.apply_sharding(sharded_dp0, 2, 0) sharded_dp1 = numbers_dp.sharding_filter() torch.utils.data.sharding.apply_sharding(sharded_dp1, 2, 1) self.assertEqual(1, len(sharded_dp0)) self.assertEqual(0, len(sharded_dp1)) @skipIfNoDill def test_old_dataloader(self): dp = self._get_pipeline() expected = list(dp) dp = self._get_pipeline().sharding_filter() dl = DataLoader(dp, batch_size=1, shuffle=False, num_workers=2, worker_init_fn=torch.utils.data.backward_compatibility.worker_init_fn) items = [] for i in dl: items.append(i) self.assertEqual(sorted(expected), sorted(items)) if __name__ == '__main__': run_tests()