#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace torch { namespace jit { namespace { void OptimizeGraph( std::shared_ptr& graph, const StaticModuleOptions& opts) { Inline(*graph); ConstantPropagation(graph); Canonicalize(graph); ConstantPropagation(graph); RemoveTensorMutation(graph); ConstantPropagation(graph); EliminateDeadCode(graph); FuseInferenceOpsForSparseNN(graph); // TODO: we can avoid this guard by moving operations // to exposed folders. #ifdef FBCODE_CAFFE2 if (opts.enable_out_variant) { ReplaceWithCopy(graph); FuseListUnpack(graph); } #endif ConstantPropagation(graph); } bool CheckGraphEligibility(const std::shared_ptr& graph) { // check for sub-blocks bool can_support = true; for (auto* node : graph->block()->nodes()) { for (Block* sub_block : node->blocks()) { VLOG(1) << "Found nested sub-blocks in graph at node: " << PrintNode(node); can_support = false; } } return can_support; } // remove unused input 0 from graph bool RemoveSelfFromGraphInput(std::shared_ptr& graph) { if (graph->inputs().at(0)->type()->is_module()) { if (graph->inputs().at(0)->hasUses()) { return false; } graph->eraseInput(0); } return true; } // remove "self" from function schema c10::FunctionSchema RemoveSelfFromSchema(const c10::FunctionSchema& s) { TORCH_CHECK(s.arguments().size() >= 1 && s.arguments()[0].name() == "self"); std::vector args({s.arguments().begin() + 1, s.arguments().end()}); return s.cloneWithArguments(args); } bool mayContainAlias(AliasDb& db, const Value* a, const Value* b) { // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast) return db.mayContainAlias(const_cast(a), const_cast(b)); } bool mayContainAlias( AliasDb& db, const std::unordered_set& a, const std::unordered_set& b) { std::vector as; std::vector bs; as.reserve(a.size()); for (auto* v : a) { // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast) as.emplace_back(const_cast(v)); } bs.reserve(b.size()); for (auto* v : b) { // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast) bs.emplace_back(const_cast(v)); } return db.mayContainAlias(as, bs); } // Returns two useful constructs: // first: map each value to all values that are alive // at the same time. // second: set of all inputs/outputs/constants (always alive) // and their aliases // The algorithm does a traversal of the execution graph // while keeping track of the live values. using LivenessInformation = std::pair< std::unordered_map>, std::unordered_set>; LivenessInformation GetLivenessInformation( const std::shared_ptr& graph, AliasDb& db) { // map a Value to a set of Values that overlap live-ranges with the Value's std::unordered_map> liveness_map; // a set of Values whose live-range exceed current inference std::unordered_set always_alive; // map Values to its creation order in graph (Note: only traverse top-level // nodes such that nodes under control-flows are represented by top-level // block nodes) std::vector values_in_creation_order; std::unordered_map values_to_idx_in_creation_order; for (const auto* node : graph->nodes()) { for (const auto* v : node->outputs()) { values_to_idx_in_creation_order[v] = values_in_creation_order.size(); values_in_creation_order.emplace_back(v); } } // presence of a Value in live_values_use_chain means the Value alive // Value mapped to set of Nodes that may use the Value (i.e., use-chain of // Value) std::unordered_map> live_values_use_chain; // Node mapped to set of Values that the Node may use (i.e., def-chain of node // inputs) std::unordered_map> live_nodes_def_chain; // mark inputs, constants, outputs as always_alive for (const auto* input : graph->inputs()) { always_alive.insert(input); } for (const auto* output : graph->outputs()) { always_alive.insert(output); } for (const auto* node : graph->nodes()) { if (node->kind() == prim::Constant) { for (const auto* output : node->outputs()) { always_alive.insert(output); } } } // add v to the current liveness_map std::function add_live_value_fn = [&](const Value* v) { if (liveness_map.count(v)) { return; } liveness_map[v] = {}; for (const auto& live_v : live_values_use_chain) { liveness_map.at(v).insert(live_v.first); liveness_map.at(live_v.first).insert(v); } // only add values to the live set if they // have deps, otherwise they die immediately if (v->uses().size()) { live_values_use_chain[v] = {}; } // record the relationship between v (Value) and its uses (Node) for (const auto& u : v->uses()) { const auto* node = u.user; live_values_use_chain.at(v).insert(node); live_nodes_def_chain[node].insert(v); } // FIXME(penguin): the following alias refinement seems to assume // that `v` refers to a new tensor created by the node that defines // v, thus other Values "before" the node that defines `v` cannot // possibly be aliased to `v`. // TODO(penguin): Is it a limitation of TS alias analysis // so that we need to do such refinement? If so, better improve // alias analysis so that we dont need this special handling here // // Refine aliases of v by include only those created after v std::vector refined_aliases; auto idx = values_to_idx_in_creation_order[v]; for (; idx < values_in_creation_order.size(); ++idx) { auto* alias_v = values_in_creation_order[idx]; if (mayContainAlias(db, v, alias_v)) { refined_aliases.emplace_back(alias_v); } } // for all the values in the alias set, // we set them "alive" for (auto* aliased_v : refined_aliases) { add_live_value_fn(aliased_v); for (const auto& u : aliased_v->uses()) { const auto* node = u.user; // track deps of the aliased values is if they // are our own live_values_use_chain.at(v).insert(node); live_nodes_def_chain[node].insert(v); } } }; auto traverse_node_fn = [&](const Node* node, std::vector& dead) { if (live_nodes_def_chain.count(node)) { for (const auto* v : live_nodes_def_chain.at(node)) { live_values_use_chain.at(v).erase(node); if (!live_values_use_chain.at(v).size()) { dead.emplace_back(v); } } } }; for (const auto* node : graph->nodes()) { for (const auto* v : node->outputs()) { if (mayContainAlias(db, ValueSet{v}, always_alive)) { always_alive.insert(v); } else { add_live_value_fn(v); } } std::vector dead; traverse_node_fn(node, dead); for (const auto* dead_value : dead) { live_values_use_chain.erase(dead_value); } } for (const auto& v : live_values_use_chain) { TORCH_CHECK(always_alive.count(v.first)); } for (const auto* node : graph->nodes()) { for (const auto* input : node->inputs()) { for (const auto* output : node->outputs()) { if (liveness_map.count(input) && liveness_map.count(output)) { liveness_map.at(input).insert(output); liveness_map.at(output).insert(input); } } } } return std::make_pair(liveness_map, always_alive); } // Collect the set of Values that are candidates for memory planning: // - Values that are used in in-place operators (i.e., _out variants), and // - excluding those that are either inputs or outputs of // non in-place operators // // Returns // first: Values that are candidates for memory planning // second: A deterministc order of all values std::pair, std::vector> GetMemoryPlanningCandidates(const std::shared_ptr& graph) { // for determinism std::unordered_set seen_values; std::vector all_values; std::unordered_set can_reuse; // values used by unsupported ops (as either inputs or outputs) // these need to be removed from "can_reuse" after analyzing all nodes std::unordered_set cannot_reuse; for (auto* n : graph->nodes()) { bool can_reuse_inputs_outputs = canReuseInputsOutputs(n); for (const auto* v : n->inputs()) { if (!seen_values.count(v)) { all_values.emplace_back(v); seen_values.insert(v); } if (can_reuse_inputs_outputs) { can_reuse.insert(v); } else { cannot_reuse.insert(v); } } for (const auto* v : n->outputs()) { all_values.emplace_back(v); seen_values.insert(v); if (can_reuse_inputs_outputs) { can_reuse.insert(v); } else { cannot_reuse.insert(v); } } } for (const auto* v : cannot_reuse) { can_reuse.erase(v); } // find a deterministic order std::vector optimizable; for (const auto* v : all_values) { if (can_reuse.count(v)) { optimizable.emplace_back(v); can_reuse.erase(v); } } return std::make_pair(optimizable, all_values); } // Equipped with a liveness map we can allocate memory to // ivalues, reusing memory along the way. However, we are // constrained by the set of optimizable_values // (inputs/outputs of out variants). Inputs/outputs of view ops // can't be reused. // // Algorithm: // # clusters of values sharing the same memory // # are called "value_to_same_storage_values" in the implementation // # inserting into a cluster denotes sharing memory. // // clusters = {} // for all v in optimzable_values: // for all cluster in clusters: # can we insert into cluster? // for all live_v in live_during(v): // if cluster.contains(live_v): // skip to next custer // cluster.add(v) // skip to next v // if no cluster found: // clusters.add(cluster{v}) // // // NB: This is a deterministic implementation, which makes it easier to tune // and debug. std::unordered_map> GenerateSameStorageValues( const LivenessInformation& lm, const std::pair, std::vector>& optimizable, AliasDb& db) { const auto& alive_during = lm.first; const auto& always_alive = lm.second; const auto& optimizable_values = optimizable.first; const auto& all_values = optimizable.second; // map Value* to a set Value* that can share the same storage with it std::unordered_map> same_storage_values; // make new_v and old_v map to the same storage (i.e., add to each other's // same_storage_values set) auto share_storage_fn = [&](const Value* new_v, const Value* old_v) { if (new_v == old_v) { return; } DCHECK(same_storage_values.count(old_v)); std::set seen; std::vector values; for (auto* v : same_storage_values.at(old_v)) { if (seen.count(v)) { continue; } seen.insert(v); values.emplace_back(v); } for (auto* v : same_storage_values.at(new_v)) { if (seen.count(v)) { continue; } seen.insert(v); values.emplace_back(v); } for (const auto* v : values) { same_storage_values[v] = values; } }; // initialize with known same_storage_values (aliasing values) for (const auto* v : all_values) { if (!same_storage_values.count(v)) { same_storage_values[v] = {v}; } // skip always alive values (alias inputs/outputs/weights) if (always_alive.count(v)) { continue; } for (const auto& p : same_storage_values) { // NB: this means we cannot optimize operations that "sometimes alias" // TODO: add a more robust check of this behavior at runtime // FIXME (penguin): this handling makes v and MayAlias(v) share the // same storage, which is not correct. if (db.mayAlias(p.first, v)) { share_storage_fn(v, p.first); } } } // to preserve determinism std::vector seen; auto compute_liveset_fn = [&always_alive, &alive_during, &same_storage_values]( std::set& live, const Value* v) { for (const auto* sv : same_storage_values.at(v)) { const auto& l = alive_during.count(sv) ? alive_during.at(sv) : std::set{}; live.insert(l.begin(), l.end()); } live.insert(always_alive.begin(), always_alive.end()); }; // check if same_storage_values[s] intersects with live auto intersect_fn = [&same_storage_values]( std::set& live, const Value* s) { bool intersect = false; for (const auto* v : same_storage_values.at(s)) { if (live.count(v)) { intersect = true; break; } } return intersect; }; for (const auto* v : optimizable_values) { if (always_alive.count(v)) { continue; } // get values that are live during the lifetime of v std::set live; compute_liveset_fn(live, v); for (const auto* s : seen) { // if live(same_storage_values[v]) and same_storage_values[s] // do not overlap, then s and v can share the same storage if (!intersect_fn(live, s)) { share_storage_fn(v, s); // since s is added to same_storage_values[v], live needs // to be recomputed, so bail out here break; } } seen.emplace_back(v); } return same_storage_values; } void PrepareGraphForStaticModule( std::shared_ptr graph, const StaticModuleOptions& opts) { // TODO: call CheckGraphEligibility before trying to enable static runtime TORCH_CHECK(CheckGraphEligibility(graph)); OptimizeGraph(graph, opts); } std::pair, std::shared_ptr> PrepareForStaticModule( const torch::jit::Module& m, const StaticModuleOptions& opts) { VLOG(1) << "StaticModuleOptions: cleanup_activations " << opts.cleanup_activations << ", enable_out_variant " << opts.enable_out_variant << ", optimize_memory" << opts.optimize_memory << ", optimize_graph_output_memory" << opts.optimize_graph_output_memory; auto module = m.copy(); module.eval(); auto module_ptr = std::make_shared(freeze_module(module)); Method method = module_ptr->get_method("forward"); auto graph = module_ptr->get_method("forward").graph(); // graph->dump(); PrepareGraphForStaticModule(graph, opts); return std::make_pair(graph, module_ptr); } std::pair, std::shared_ptr> PrepareForStaticModule( std::shared_ptr graph, const StaticModuleOptions& opts) { PrepareGraphForStaticModule(graph, opts); return std::make_pair(graph, nullptr); } } // namespace StaticModule::StaticModule( std::shared_ptr g, const StaticModuleOptions& opts) : StaticModule(PrepareForStaticModule(g, opts), opts) {} StaticModule::StaticModule( const torch::jit::Module& m, const StaticModuleOptions& opts) : StaticModule(PrepareForStaticModule(m, opts), opts) {} StaticModule::StaticModule( std::pair, std::shared_ptr> graph_and_module, const StaticModuleOptions& opts) : opts_(opts), graph_(std::move(graph_and_module.first)), module_(std::move(graph_and_module.second)) { // check opt flags if (opts.optimize_graph_output_memory) { TORCH_CHECK( opts_.enable_out_variant && opts_.optimize_memory, "When optimize_graph_output_memory is true, enable_out_variant and optimize_memory must be set to true"); } if (opts_.optimize_memory) { TORCH_CHECK( opts_.enable_out_variant, "When optimize_memory is true, enable_out_variant must be set to true"); } // handle schema if (module_) { Method method = module_->get_method("forward"); schema_ = method.function().getSchema(); if (RemoveSelfFromGraphInput(graph_)) { schema_ = RemoveSelfFromSchema(method.function().getSchema()); } else { first_input_is_self_ = true; schema_ = method.function().getSchema(); } } // map Value* to IValue (from inputs or prim::Constant) or null std::unordered_map value_to_ivalue; // map Value* to its SSA definition IR std::unordered_map value_to_ssa_def; // N inputs map to the first N entries in storage // NOLINTNEXTLINE(clang-diagnostic-sign-compare) for (auto i = 0; i < graph_->inputs().size(); ++i) { Value* input = graph_->inputs()[i]; value_to_ivalue[input] = nullptr; value_to_ssa_def[input] = std::make_pair(INPUT_VALUE, i); } // NB: before optimizing the order of execution, ensure that the // memory optimization pass (LivenessMap) is // aware of the new order! // Fill constants first, so we have a std::vector we can reference // later for (Node* node : graph_->nodes()) { if (node->kind() != prim::Constant) { continue; } auto* v = node->output(); TORCH_CHECK(v->type()->kind() != FunctionType::Kind); constants_.emplace_back(toIValue(v).value()); } { // construct SSA definition for constant nodes int i = 0; for (Node* node : graph_->nodes()) { if (node->kind() != prim::Constant) { continue; } auto* v = node->output(); value_to_ssa_def[v] = std::make_pair(CONSTANT_VALUE, i); value_to_ivalue[v] = &(constants_[i++]); } } // construct SSA definition for non-constant nodes int node_idx = 0; for (Node* node : graph_->nodes()) { if (node->kind() == prim::Constant) { continue; } std::vector ivalue_inputs; std::vector input_ssa_defs; for (Value* input : node->inputs()) { ivalue_inputs.emplace_back(value_to_ivalue.at(input)); input_ssa_defs.emplace_back(value_to_ssa_def.at(input)); } node_inputs_ssa_def_map_[node_idx] = input_ssa_defs; nodes_.emplace_back( ProcessedNode(node, std::move(ivalue_inputs), opts.enable_out_variant)); for (const auto i : c10::irange(node->outputs().size())) { value_to_ivalue[node->outputs()[i]] = nullptr; value_to_ssa_def[node->outputs()[i]] = std::make_pair(node_idx, i); } node_idx++; } for (auto output : graph_->outputs()) { output_ssa_defs_.emplace_back(value_to_ssa_def[output]); } // Prepare for memory planning AliasDb alias_db(graph_); auto lm = GetLivenessInformation(graph_, alias_db); external_values_ = lm.second; if (opts_.optimize_memory) { auto values = GetMemoryPlanningCandidates(graph_); value_to_same_storage_values_ = GenerateSameStorageValues(lm, values, alias_db); } } const StaticModuleOptions& StaticModule::opts() const { return opts_; } size_t StaticModule::num_outputs() const { return graph_->outputs().size(); } size_t StaticModule::num_inputs() const { return graph_->inputs().size(); } StaticRuntime& StaticModule::runtime() { if (!cached_runtime_) { cached_runtime_ = std::make_unique(*this); } return *cached_runtime_; } std::vector StaticModule::operator()( const std::vector& inps) { return runtime()(inps); } c10::IValue StaticModule::operator()( const std::vector& args, const std::unordered_map& kwargs) { return runtime()(args, kwargs); } StaticRuntime::StaticRuntime(const StaticModule& sm) : static_module_(sm) { // NB: create unchanging std::vectors we can reference inputs_.resize(sm.num_inputs()); nodes_.resize(sm.nodes().size()); for (const auto idx : c10::irange(sm.nodes().size())) { const auto& n_ref = sm.nodes()[idx]; nodes_[idx] = n_ref; // copy the node auto& n = nodes_[idx]; // hook up the inputs // NOLINTNEXTLINE(clang-diagnostic-sign-compare) for (const auto i : c10::irange(n.inputs().size())) { if (n.inputs()[i] == nullptr) { int node_idx = 0; int out_idx = 0; std::tie(node_idx, out_idx) = sm.index_map().at(idx)[i]; DCHECK(out_idx >= 0); // input if (node_idx == StaticModule::INPUT_VALUE) { n.set_input(i, &inputs_[out_idx]); } else if (node_idx == StaticModule::CONSTANT_VALUE) { n.set_input(i, &sm.constants()[out_idx]); } else { DCHECK(node_idx >= 0); n.set_input(i, &(nodes_[node_idx].Output(out_idx))); } } } } for (const auto& index_pair : sm.output_indices()) { int node_idx = 0; int out_idx = 0; std::tie(node_idx, out_idx) = index_pair; if (node_idx == StaticModule::INPUT_VALUE) { outputs_.emplace_back(&inputs_[out_idx]); } else if (node_idx == StaticModule::CONSTANT_VALUE) { // This is a very rare case where const correctness // breaks -- the user is returning a constant from // the graph. // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast) outputs_.emplace_back(const_cast(&sm.constants()[out_idx])); } else { auto* out = &nodes_[node_idx].Output(out_idx); outputs_.emplace_back(out); } } } std::vector StaticRuntime::operator()( const std::vector& inps) { std::vector stack; stack.resize(inps.size()); for (const auto i : c10::irange(inps.size())) { stack[i] = inps[i]; } c10::IValue v = (*this)(stack, std::unordered_map()); std::vector out; if (v.isTuple()) { auto t = v.toTuple(); for (const auto& el : t->elements()) { out.emplace_back(el.toTensor()); } } else { out.emplace_back(v.toTensor()); } return out; } void StaticRuntime::set_inputs( const std::vector& args, const std::unordered_map& kwargs) { if (!kwargs.empty()) { // This is not ideal TORCH_CHECK( static_module_.schema(), "Schema is not available. Consider creating the Static Runtime " "with StaticModule(const torch::jit::Module& m) instead."); std::vector stack; stack.reserve(inputs_.size()); if (static_module_.first_input_is_self()) { stack.emplace_back(static_module_.module()._ivalue()); } stack.insert(stack.end(), args.begin(), args.end()); static_module_.schema()->checkAndNormalizeInputs(stack, kwargs); DCHECK_EQ(inputs_.size(), stack.size()); for (const auto i : c10::irange(stack.size())) { Input(i) = std::move(stack[i]); } } else { if (static_module_.first_input_is_self()) { Input(0) = static_module_.module()._ivalue(); DCHECK_EQ(inputs_.size(), args.size() + 1); for (const auto i : c10::irange(args.size())) { Input(i + 1) = args[i]; } } else { DCHECK_EQ(inputs_.size(), args.size()); for (const auto i : c10::irange(args.size())) { Input(i) = args[i]; } } } } c10::IValue StaticRuntime::operator()( const std::vector& args, const std::unordered_map& kwargs) { // We assume inference workloads, so we do not need // autograd. Enabling this is a significant win on dispatcher // overhead because it saves a round of dispatch for at least some // functions, such as resize_ and resize_as_. c10::InferenceMode mode; if (planner_) { planner_->allocate(); } set_inputs(args, kwargs); // NB: before optimizing the order of execution, ensure that the // memory optimization pass (LivenessMap) is // aware of the new order! for (auto& n : nodes_) { // LOG(INFO) << "Running node: " << PrintNode(n.node()); n.run(); } if (static_module_.opts().cleanup_activations) { // MemoryPlanner is created after the first invocation of `run()`. This is // done intentionally because MemoryPlanner uses `Tensor` sizes of the // previous `run()` for memory planning of subsequent runs if (!planner_) { planner_ = std::make_unique( this, static_module_.values_share_same_storage(), static_module_.external_values(), static_module_.opts().enable_out_variant, static_module_.opts().optimize_graph_output_memory); } planner_->deallocate(); // clean up owning refs of input tensors clean_up_input_ivalues(); } // no need to keep references of outputs in static runtime anymore if (static_module_.num_outputs() > 1) { std::vector outputs; outputs.reserve(static_module_.num_outputs()); // NOLINTNEXTLINE(clang-diagnostic-sign-compare) for (auto i = 0; i < static_module_.num_outputs(); ++i) { // use move here. Otherwise, clean up outputs_[i] explicitly outputs.emplace_back(std::move(*outputs_[i])); } return c10::ivalue::Tuple::create(std::move(outputs)); } #ifndef NDEBUG check_for_memory_leak(false); #endif // use move here. Otherwise, clean up outputs_[0] explicitly return std::move(*outputs_[0]); } void StaticRuntime::benchmark( const std::vector& args, const std::unordered_map& kwargs, const int warmup_runs, const int main_runs) { float time_per_iter = benchmark_model(args, kwargs, warmup_runs, main_runs); std::cout << "Static runtime ms per iter: " << time_per_iter << ". Iters per second: " << 1000.0 / time_per_iter << std::endl; IndividualMetrics results = benchmark_individual_ops(args, kwargs, warmup_runs, main_runs); for (const auto i : c10::irange(nodes_.size())) { const Node* node = nodes_[i].node(); std::cout << "Node #" << i << ": " << results.time_per_node[i] << " ms/iter, "; node->print(std::cout, 0, nullptr, false); } std::vector> time_per_node_type_vec{ results.time_per_node_type.begin(), results.time_per_node_type.end()}; std::sort( time_per_node_type_vec.begin(), time_per_node_type_vec.end(), [](auto& left, auto& right) { return left.second > right.second; }); std::cout << "Time per node type:" << std::endl; for (const auto& p : time_per_node_type_vec) { const std::string& kind = p.first; const double ms = p.second; std::cout << std::setw(15) << ms << " ms. " << std::setw(10) << results.percent_per_node_type[kind] << "%. " << kind << " (" << results.instances_per_node_type[kind] << " nodes"; if (results.out_nodes.count(kind) == 0) { std::cout << ")" << std::endl; } else { std::cout << ", out variant)" << std::endl; } } std::cout << std::setw(15) << results.total_time << " ms. in Total" << std::endl; std::cout << "StaticRuntime setup time: " << results.setup_time << " ms" << std::endl; std::cout << "Memory allocation time: " << results.memory_alloc_time << " ms\n"; std::cout << "Memory deallocation time: " << results.memory_dealloc_time << " ms" << std::endl; std::cout << "Outputs deallocation time: " << results.output_dealloc_time << " ms" << std::endl; if (planner_) { std::cout << "Total memory managed: " << planner_->total_managed() << " bytes" << std::endl; if (static_module_.opts().optimize_memory) { std::cout << "Total number of reused tensors: " << planner_->total_reused_tensors() << std::endl; } std::cout << "Total number of 'out' variant nodes/total number of nodes: " << results.out_nodes_count << "/" << results.total_nodes_count << " (" << 100.0 * (results.out_nodes_count) / static_cast(results.total_nodes_count) << "%)" << std::endl; } check_for_memory_leak(); #ifndef NDEBUG display_nodes(args, kwargs); #endif } float StaticRuntime::benchmark_model( const std::vector& args, const std::unordered_map& kwargs, const int warmup_runs, const int main_runs) { TORCH_CHECK(warmup_runs >= 0 && main_runs >= 1); for (const auto i : c10::irange(warmup_runs)) { (void)i; // Suppress unused variable warning operator()(args, kwargs); } caffe2::Timer timer; for (const auto i : c10::irange(main_runs)) { (void)i; // Suppress unused variable warning operator()(args, kwargs); } float millis = timer.MilliSeconds(); return millis / static_cast(main_runs); } bool display_ivalue(const IValue& iv) { if (iv.isTensor()) { std::cout << "Tensor " << iv.toTensor().toString() << " {"; // NOLINTNEXTLINE(clang-diagnostic-sign-compare) for (auto i = 0; i < iv.toTensor().sizes().size(); ++i) { std::cout << iv.toTensor().sizes()[i]; // NOLINTNEXTLINE(clang-diagnostic-sign-compare) if (iv.toTensor().sizes().size() > i + 1) { std::cout << ", "; } } std::cout << "}\n"; return true; } else if (iv.isTensorList()) { std::cout << "TensorList {" << iv.toTensorList().size() << "}\n"; return true; } else if (iv.isGenericDict()) { std::cout << "Dict {" << iv.toGenericDict().size() << "}\n"; return true; } else if (iv.isTuple()) { std::cout << "Tuple {" << iv.toTuple()->elements().size() << "}\n"; return true; } else if (iv.isInt()) { std::cout << "int {" << iv.toInt() << "}\n"; return true; } else if (iv.isBool()) { std::cout << "bool {" << iv.toBool() << "}\n"; return true; } else if (iv.isDouble()) { std::cout << "double {" << iv.toDouble() << "}\n"; return true; } return false; } void display_pnode_info(const ProcessedNode& pnode) { pnode.node()->print(std::cout, 0, nullptr, false); const std::vector& inputs = pnode.inputs(); // NOLINTNEXTLINE(clang-diagnostic-sign-compare) for (auto i = 0; i < inputs.size(); ++i) { std::cout << "\ti" << i << ": "; if (!display_ivalue(*inputs[i])) { std::cout << *(pnode.node()->inputs()[i]->type()) << '\n'; } } const std::vector& outputs = pnode.outputs(); // NOLINTNEXTLINE(clang-diagnostic-sign-compare) for (auto i = 0; i < outputs.size(); ++i) { std::cout << "\to" << i << ": "; if (!display_ivalue(outputs[i])) { std::cout << *(pnode.node()->outputs()[i]->type()) << '\n'; } } } void StaticRuntime::display_nodes( const std::vector& args, const std::unordered_map& kwargs) { c10::InferenceMode mode; if (planner_) { planner_->allocate(); } set_inputs(args, kwargs); for (auto& node : nodes_) { node.run(); display_pnode_info(node); } if (static_module_.opts().cleanup_activations) { // MemoryPlanner is created after the first invocation of `run()`. This is // done intentionally because MemoryPlanner uses `Tensor` sizes of the // previous `run()` for memory planning of subsequent runs if (!planner_) { planner_ = std::make_unique( this, static_module_.values_share_same_storage(), static_module_.external_values(), static_module_.opts().enable_out_variant, static_module_.opts().optimize_graph_output_memory); } planner_->deallocate(); // clean up owning refs of input tensors clean_up_input_ivalues(); } } StaticRuntime::IndividualMetrics StaticRuntime::benchmark_individual_ops( const std::vector& args, const std::unordered_map& kwargs, const int warmup_runs, const int main_runs) { TORCH_CHECK(warmup_runs >= 0 && main_runs >= 1); // See comment on above use of InferenceMode for // explanation. c10::InferenceMode mode; IndividualMetrics results; results.time_per_node.resize(nodes_.size(), 0); // setup time caffe2::Timer timer; set_inputs(args, kwargs); results.setup_time = timer.MilliSeconds(); // warmup runs for (const auto i : c10::irange(warmup_runs)) { (void)i; // Suppress unused variable warning operator()(args, kwargs); } // main runs for (const auto k : c10::irange(main_runs)) { (void)k; // Suppress unused variable warning set_inputs(args, kwargs); timer.Start(); if (planner_) { planner_->allocate(); } float millis = timer.MilliSeconds(); results.memory_alloc_time += millis; for (const auto i : c10::irange(nodes_.size())) { timer.Start(); nodes_[i].run(); millis = timer.MilliSeconds(); results.time_per_node[i] += millis; } timer.Start(); if (static_module_.opts().cleanup_activations) { if (!planner_) { planner_ = std::make_unique( this, static_module_.values_share_same_storage(), static_module_.external_values(), static_module_.opts().enable_out_variant, static_module_.opts().optimize_graph_output_memory); } planner_->deallocate(); // clean up owning refs of input tensors clean_up_input_ivalues(); } millis = timer.MilliSeconds(); results.memory_dealloc_time += millis; timer.Start(); // no need to keep references of outputs in static runtime anymore c10::IValue output; if (static_module_.num_outputs() > 1) { std::vector outputs; outputs.reserve(static_module_.num_outputs()); for (const auto i : c10::irange(static_module_.num_outputs())) { // use move here. Otherwise, clean up outputs_[i] explicitly outputs.emplace_back(std::move(*outputs_[i])); } output = c10::ivalue::Tuple::create(std::move(outputs)); } #ifndef NDEBUG check_for_memory_leak(false); #endif // use move here. Otherwise, clean up outputs_[0] explicitly output = std::move(*outputs_[0]); // release outputs explicitly to measure the time it takes output = IValue(); millis = timer.MilliSeconds(); results.output_dealloc_time += millis; } // post processing for (const auto i : c10::irange(nodes_.size())) { const Node* node = nodes_[i].node(); std::string kind = std::string(node->kind().toQualString()); results.time_per_node[i] /= static_cast(main_runs); results.time_per_node_type[kind] += results.time_per_node[i]; results.instances_per_node_type[kind]++; if (nodes_[i].has_out_variant()) { results.out_nodes.insert(kind); results.out_nodes_count++; } results.total_time += results.time_per_node[i]; } results.total_nodes_count = nodes_.size(); results.memory_alloc_time /= static_cast(main_runs); results.memory_dealloc_time /= static_cast(main_runs); results.output_dealloc_time /= static_cast(main_runs); for (const auto& p : results.time_per_node_type) { const std::string& kind = p.first; results.percent_per_node_type[kind] = p.second / results.total_time * 100; } return results; } void StaticRuntime::check_for_memory_leak(bool output_returned) { if (!static_module_.opts().cleanup_activations) { return; } // check for inputs for (const auto i : c10::irange(inputs_.size())) { TORCH_CHECK(inputs_[i].isNone(), "Input ", i, " was not cleaned up"); } std::unordered_set output_ivalues( outputs_.begin(), outputs_.end()); for (const auto n : c10::irange(nodes_.size())) { auto& pnode = nodes_[n]; for (const auto i : c10::irange(pnode.outputs().size())) { const IValue* ival = &pnode.Output(i); const Value* val = pnode.node()->output(i); const std::string error_msg = "Output " + c10::to_string(i) + ", %" + val->debugName() + " of node " + c10::to_string(n) + " was not cleaned up"; if (output_ivalues.count(ival) == 0) { // check for intermediates if (!ival->isNone()) { TORCH_CHECK( ival->isTensor() || isOptimizableContainerType(pnode.node()), error_msg); if (ival->isTensor()) { const auto& t = ival->toTensor(); if (t.defined()) { auto* storage_impl = t.storage().unsafeGetStorageImpl(); TORCH_CHECK(storage_impl->data() == nullptr, error_msg); } } } } else { // check for outputs if (output_returned) { TORCH_CHECK(ival->isNone(), error_msg); } } } } VLOG(1) << "Finished checking for memory leak"; } static void assign_storage_to_managed_tensors( StaticRuntime* runtime, const std::unordered_set& managed_tensor_values, const std::unordered_map>& value_to_same_storage_values, std::vector>>& managed_tensors) { // map Value to index to managed_storage, where multiple values can // map to the same index (i.e., sharing the same storage) std::unordered_map value_to_storage_idx; // Snapshot of the current memory state for (auto& pnode : runtime->nodes()) { for (const auto i : c10::irange(pnode.outputs().size())) { auto& ival = pnode.Output(i); const auto* val = pnode.node()->outputs()[i]; if (managed_tensor_values.count(val)) { TORCH_CHECK(ival.isTensor()); at::Tensor* tensor = &ival.toTensor(); if (value_to_storage_idx.count(val)) { managed_tensors[value_to_storage_idx[val]].second.emplace_back( tensor); } else { auto p = std::make_pair>(0, {tensor}); managed_tensors.emplace_back(std::move(p)); // first of a group, update the value_to_storage_idx map with the // index if (value_to_same_storage_values.count(val)) { auto storage_idx = managed_tensors.size() - 1; for (const auto* v : value_to_same_storage_values.at(val)) { value_to_storage_idx[v] = storage_idx; } } } } } } } MemoryPlanner::MemoryPlanner( StaticRuntime* runtime, const std::unordered_map>& value_to_same_storage_values, const std::unordered_set& external_values, bool enable_out_variant, bool manage_graph_output_memory) { // collect register indices of outputs of ops with out variant std::unordered_set managed_tensor_values; std::unordered_set leaked_values; if (enable_out_variant) { for (ProcessedNode& pnode : runtime->nodes()) { if (pnode.has_out_variant()) { // NOLINTNEXTLINE(clang-diagnostic-sign-compare) for (const auto i : c10::irange(pnode.outputs().size())) { const Value* out_v = pnode.node()->outputs()[i]; if (external_values.count(out_v)) { continue; } // Types are stored in the underlying TorchScript IR const auto& type = out_v->type(); if (type->cast()) { managed_tensor_values.insert(out_v); } else if (isOptimizableContainerType(pnode.node())) { // We "leak" certain container types because their allocations take // a long time leaked_values.insert(out_v); } } } } } // collect unmanaged output ivalues std::unordered_set unmanaged_ivalues; for (ProcessedNode& pnode : runtime->nodes()) { // NOLINTNEXTLINE(clang-diagnostic-sign-compare) for (const auto i : c10::irange(pnode.outputs().size())) { // Types are stored in the underlying TorchScript IR const Value* out_v = pnode.node()->outputs()[i]; if (managed_tensor_values.count(out_v) || leaked_values.count(out_v)) { continue; } IValue& out = pnode.Output(i); unmanaged_ivalues.insert(&out); } } // since runtime->outputs() escape from run(), remove them from // managed_tensor_values and from unmanaged_ivalues for (const Value* output : runtime->graph().outputs()) { managed_tensor_values.erase(output); } for (IValue* output : runtime->outputs()) { unmanaged_ivalues.erase(output); } // copy to unmanaged_ivalues_ for (IValue* out : unmanaged_ivalues) { unmanaged_ivalues_.emplace_back(out); } if (enable_out_variant) { ::torch::jit::assign_storage_to_managed_tensors( runtime, managed_tensor_values, value_to_same_storage_values, managed_tensors_); } } // Don't change the size if it is already aligned, otherwise increase the size // to make it aligned. size_t MemoryPlanner::compute_aligned_tensor_size(size_t nbytes) { // Note: everything below is size_t return (nbytes + c10::gAlignment - 1) & (~(c10::gAlignment - 1)); } at::DataPtr MemoryPlanner::allocate_buffer(size_t size) { at::Allocator* allocator = c10::GetCPUCachingAllocator(); return allocator->allocate(size); } void MemoryPlanner::allocate() { if (managed_bytes_ == 0) { return; } buffer_ = allocate_buffer(managed_bytes_); size_t offset = 0; uint8_t* start = static_cast(buffer_.get()); reused_tensors_ = 0; for (const auto& ms : managed_tensors_) { auto tensor_size = ms.first; if (tensor_size == 0) { continue; } const auto& tensors = ms.second; DCHECK_LE(offset + tensor_size, managed_bytes_); void* src = static_cast(start + offset); for (auto* tensor : tensors) { tensor->storage().set_data_ptr_noswap( at::DataPtr(src, src, nullptr, tensor->device())); tensor->storage().set_nbytes(tensor_size); reused_tensors_++; } reused_tensors_--; offset += tensor_size; } DCHECK_EQ(offset, managed_bytes_); } void MemoryPlanner::deallocate() { managed_bytes_ = 0; // free memory used by outputs of ops in out variants // but keep the TensorImpl and StorageImpl around for (auto& ms : managed_tensors_) { const auto& tensors = ms.second; size_t max = ms.first; for (auto& tensor : tensors) { size_t current_size = compute_aligned_tensor_size(tensor->storage().nbytes()); tensor->storage().unsafeGetStorageImpl()->reset(); max = std::max(max, current_size); } // Static runtime does not know the size of tensors statically, so we use // the tensor size from the previous run to allocate tensors for the next // run (following C2 tradition), exploiting the fact that tensor storage // size does not have to match that of real tensor size. The following logic // records the tensor storage size for the next run. ms.first = max; managed_bytes_ += max; } // for unmanaged ivalues (either tensor or non-tensor), we reset the *iv so // that the objects pointed to by *iv may be reclaimed by reference counting for (auto& iv : unmanaged_ivalues_) { *iv = IValue(); } buffer_ = {}; } ProcessedNode::ProcessedNode( Node* node, std::vector&& inputs, bool enable_out_variant) : node_(node), inputs_(std::move(inputs)) { // TODO leverage type information outputs_.resize(node->outputs().size()); if (enable_out_variant && (fn_ = getOutOfPlaceOperation(node))) { VLOG(1) << "Switch to out variant for node: " << PrintNode(node); return; } if (!fn_ && (native_fn_ = getNativeOperation(node))) { VLOG(1) << "Switch to native impl for node: " << PrintNode(node); return; } { const Operator& op = node->getOperator(); TORCH_CHECK(op.hasOperation()); op_ = op.getOperation(node); VLOG(1) << "Fallback interpreter for node: " << PrintNode(node); } } void ProcessedNode::run() { if (fn_) { fn_(this); } else if (native_fn_) { native_fn_(this); } else { std::vector stack; const size_t size = node_->inputs().size(); stack.reserve(size); for (const auto i : c10::irange(size)) { stack.emplace_back(Input(i)); } DCHECK(op_); op_->operator()(&stack); DCHECK_EQ(stack.size(), node_->outputs().size()); for (const auto i : c10::irange(node_->outputs().size())) { Output(i) = std::move(stack[i]); } } } } // namespace jit } // namespace torch