from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from hypothesis import given import numpy as np import unittest from caffe2.proto import caffe2_pb2, hsm_pb2 from caffe2.python import workspace, core, gradient_checker import caffe2.python.hypothesis_test_util as hu import caffe2.python.hsm_util as hsmu # User inputs tree using protobuf file or, in this case, python utils # The hierarchy in this test looks as shown below. Note that the final subtrees # (with word_ids as leaves) have been collapsed for visualization # * # / \ # * 5,6,7,8 # / \ # 0,1,2 3,4 tree = hsm_pb2.TreeProto() words = [[0, 1, 2], [3, 4], [5, 6, 7, 8]] node1 = hsmu.create_node_with_words(words[0]) node2 = hsmu.create_node_with_words(words[1]) node3 = hsmu.create_node_with_words(words[2]) node4 = hsmu.create_node_with_nodes([node1, node2]) node = hsmu.create_node_with_nodes([node4, node3]) tree.root_node.MergeFrom(node) # Internal util to translate input tree to list of (word_id,path). serialized # hierarchy is passed into the operator_def as a string argument, hierarchy_proto = hsmu.create_hierarchy(tree) arg = caffe2_pb2.Argument() arg.name = "hierarchy" arg.s = hierarchy_proto.SerializeToString() class TestHsm(hu.HypothesisTestCase): def test_hsm_run_once(self): workspace.GlobalInit(['caffe2']) workspace.FeedBlob("data", np.random.randn(1000, 100).astype(np.float32)) workspace.FeedBlob("weights", np.random.randn(1000, 100).astype(np.float32)) workspace.FeedBlob("bias", np.random.randn(1000).astype(np.float32)) workspace.FeedBlob("labels", np.random.randn(1000).astype(np.int32)) op = core.CreateOperator( 'HSoftmax', ['data', 'weights', 'bias', 'labels'], ['output', 'intermediate_output'], 'HSoftmax', arg=[arg]) self.assertTrue(workspace.RunOperatorOnce(op)) # Test to check value of sum of squared losses in forward pass for given # input def test_hsm_forward(self): cpu_device_option = caffe2_pb2.DeviceOption() grad_checker = gradient_checker.GradientChecker( 0.01, 0.05, cpu_device_option, "default") samples = 10 dim_in = 5 X = np.zeros((samples, dim_in)).astype(np.float32) + 1 w = np.zeros((hierarchy_proto.size, dim_in)).astype(np.float32) + 1 b = np.array([i for i in range(hierarchy_proto.size)])\ .astype(np.float32) labels = np.array([i for i in range(samples)]).astype(np.int32) workspace.GlobalInit(['caffe2']) workspace.FeedBlob("data", X) workspace.FeedBlob("weights", w) workspace.FeedBlob("bias", b) workspace.FeedBlob("labels", labels) op = core.CreateOperator( 'HSoftmax', ['data', 'weights', 'bias', 'labels'], ['output', 'intermediate_output'], 'HSoftmax', arg=[arg]) grad_ops, g_input = core.GradientRegistry.GetGradientForOp( op, [s + '_grad' for s in op.output]) loss, _ = grad_checker.GetLossAndGrad( op, grad_ops, X, op.input[0], g_input[0], [0] ) self.assertAlmostEqual(loss, 44.269, delta=0.001) # Test to compare gradient calculated using the gradient operator and the # symmetric derivative calculated using Euler Method # TODO: convert to both cpu and gpu test when ready. @given(**hu.gcs_cpu_only) def test_hsm_gradient(self, gc, dc): samples = 10 dim_in = 5 X = np.random.rand(samples, dim_in).astype(np.float32) - 0.5 w = np.random.rand(hierarchy_proto.size, dim_in) \ .astype(np.float32) - 0.5 b = np.random.rand(hierarchy_proto.size).astype(np.float32) - 0.5 labels = np.array([np.random.randint(0, 8) for i in range(samples)]) \ .astype(np.int32) workspace.GlobalInit(['caffe2']) workspace.FeedBlob("data", X) workspace.FeedBlob("weights", w) workspace.FeedBlob("bias", b) workspace.FeedBlob("labels", labels) op = core.CreateOperator( 'HSoftmax', ['data', 'weights', 'bias', 'labels'], ['output', 'intermediate_output'], 'HSoftmax', arg=[arg]) self.assertDeviceChecks(dc, op, [X, w, b, labels], [0]) for i in range(3): self.assertGradientChecks(gc, op, [X, w, b, labels], i, [0]) if __name__ == '__main__': unittest.main()