import functools import inspect import itertools import types from contextlib import contextmanager, nullcontext from typing import Dict, List import torch.nn from .. import skipfiles, variables from ..allowed_functions import is_allowed from ..exc import RestartAnalysis, unimplemented, Unsupported from ..guards import GuardBuilder from ..mutation_guard import GenerationTracker from ..source import ( AttrSource, FSDPNNModuleSource, GetItemSource, NNModuleSource, NotNNModuleSource, ) from ..utils import ( get_custom_getattr, get_fake_value, is_lazy_module, is_safe_constant, istensor, istype, nnmodule_has_hooks, object_has_getattribute, proxy_args_kwargs, ) from .base import MutableLocal, typestr, VariableTracker from .functions import invoke_and_store_as_constant from .lists import SliceVariable from .user_defined import UserDefinedObjectVariable def initialize_lazy_module(tx, mod, args, kwargs): """ Fairly coupled helper used by NNModuleVariable and UnspecializedNNModuleVariable. Used to cause lazy module to be initialized (and delete its init hook) before tracing. Especially useful now that 'allowed' modules graph-break on hooks, calling this first ensures there is no hook by the time we trace __call__ and thus no graph-break for lazy allowed modules. """ assert len(kwargs) == 0 if hasattr(mod, "_initialize_hook"): def convert_to_fake(x): if isinstance(x, torch.fx.Proxy): return get_fake_value(x.node, tx) else: return x input = [ type(arg)([convert_to_fake(x) for x in arg]) if isinstance(arg, (list, tuple)) else convert_to_fake(arg) for arg in proxy_args_kwargs(args, {})[0] ] mod._infer_parameters(mod, input) @contextmanager def record_nn_module_stack(module_key: str, source, tx, mod: torch.nn.Module): fully_qualified_name = source.name() try: tx.nn_module_stack[module_key] = (fully_qualified_name, type(mod)) yield finally: del tx.nn_module_stack[module_key] class NNModuleVariable(VariableTracker): _nonvar_fields = {"module_type", "module_key", *VariableTracker._nonvar_fields} def __init__(self, module_type: type, module_key: str, **kwargs): super().__init__(**kwargs) self.module_type = module_type self.module_key = module_key assert self.source def python_type(self): return self.module_type def _wrap_submodule(self, tx, source, submod, *key_extra, **options): return def unpack_var_sequence(self, tx): # implement list/iter/tuple/etc calls base = tx.output.get_submodule(self.module_key) options = VariableTracker.propagate([self]) if isinstance(base, torch.nn.ModuleDict): result = [] for name, submod in base.items(): name_var = variables.ConstantVariable.create(name) tx.output.register_attr_or_module( submod, self.module_key, name, source=NNModuleSource(GetItemSource(self.source, name)), **options, ) result.append(name_var) return result assert isinstance( base, (torch.nn.ModuleList, torch.nn.ParameterList, torch.nn.Sequential) ), typestr(base) assert self.source result = [] for idx, submod in enumerate(base): result.append( tx.output.register_attr_or_module( submod, self.module_key, idx, source=NNModuleSource(GetItemSource(self.source, idx)), **options, ) ) return result def call_hasattr(self, tx, name: str) -> "VariableTracker": options = VariableTracker.propagate(self) mod = tx.output.get_submodule(self.module_key) result = hasattr(mod, name) return variables.ConstantVariable.create(result, **options).add_guard( NNModuleSource(AttrSource(self.source, name)).make_guard( GuardBuilder.HASATTR ) ) def is_training(self, tx): mod = tx.output.get_submodule(self.module_key) return getattr(mod, "training", False) def convert_to_unspecialized(self, tx): """Restart analysis treating this module as an UnspecializedNNModuleVariable""" mod = tx.output.get_submodule(self.module_key) GenerationTracker.tag(mod) # Mark the class dynamic unless its module initialization if tx.f_code.co_name != "__init__": GenerationTracker.mark_class_dynamic(type(mod)) raise RestartAnalysis() def _custom_getattr_fallback(self, base, tx, name, options): """Check for a __getattr__ and handle it specially if it is implemented""" if object_has_getattribute(base): unimplemented("torch.nn.Module with a custom __getattribute__ defined") getattr_fn = get_custom_getattr(base) if getattr_fn is None: return None if not isinstance(getattr_fn, types.FunctionType): unimplemented("torch.nn.Module with a non-function custom __getattr__") return variables.UserMethodVariable(getattr_fn, self, **options).call_function( tx, [variables.ConstantVariable.create(name)], {} ) def var_getattr(self, tx, name): from .builder import VariableBuilder options = VariableTracker.propagate(self) guards = options.get("guards", set()) if self.source: source = AttrSource(self.source, name) options["source"] = source else: source = None base = tx.output.get_submodule(self.module_key) base_dict = object.__getattribute__(base, "__dict__") object_member = True all_class_attribute_names = set() for x in inspect.getmro(base.__class__): all_class_attribute_names.update(x.__dict__.keys()) if not self.source: unimplemented("GETATTR with no source") if name in base_dict: subobj = base_dict[name] elif ( "_modules" in base_dict and name in base_dict["_modules"] and name not in all_class_attribute_names ): subobj = base_dict["_modules"][name] elif "_parameters" in base_dict and name in base_dict["_parameters"]: subobj = base_dict["_parameters"][name] elif "_buffers" in base_dict and name in base_dict["_buffers"]: subobj = base_dict["_buffers"][name] else: try: subobj = inspect.getattr_static(base, name) object_member = False except AttributeError: # see if we can fallback to __getattr__, which is not checked by getattr_static result = self._custom_getattr_fallback( base=base, tx=tx, name=name, options=options ) if result is not None: return result # if we can't find a __getattr__, just raise the AttributeError raise if name == "__class__" and not object_member: return variables.UserDefinedClassVariable(base.__class__, **options) if object_member: return VariableBuilder(tx, NNModuleSource(source))(subobj) else: if istype(subobj, property): return variables.UserFunctionVariable( subobj.fget, guards=guards, source=source, ).call_function(tx, [(self)], {}) elif istype(subobj, classmethod): return variables.UserMethodVariable( subobj.__func__, variables.UserDefinedObjectVariable(type(base), guards=guards), **options, ) elif istype(subobj, staticmethod): return variables.UserFunctionVariable(subobj.__get__(base), **options) elif istype(subobj, types.FunctionType): return variables.UserMethodVariable(subobj, self, **options) elif is_safe_constant(subobj) or istensor(subobj): # Support possibly common cases of class members return VariableBuilder(tx, NNModuleSource(source))(subobj) else: unimplemented(f"class property {typestr(base)} {typestr(subobj)}") return variables.GetAttrVariable(self, name, **options) def call_function( self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": options = VariableTracker.propagate(self, args, kwargs.values()) mod = tx.output.get_submodule(self.module_key) with record_nn_module_stack(self.module_key, self.source, tx, mod): is_lazy = is_lazy_module(mod) if ( isinstance(mod, torch.nn.Sequential) and mod.__class__.forward is torch.nn.Sequential.forward ): if nnmodule_has_hooks(mod): # We do not want to unroll sequential if it has hooks, since evaporating it # will cause hooks to not fire! # This terminates and restart the tracing process self.convert_to_unspecialized(tx) # Unroll sequential assert ( not is_lazy ), "Expected lazy sequential isn't a valid combination?" assert not kwargs (arg,) = args # TODO: Use named_children when it supports remove_duplicate=False. for child_name, submod in mod._modules.items(): tx.call_function( tx.output.register_attr_or_module( submod, self.module_key, child_name, source=NNModuleSource(AttrSource(self.source, child_name)), **options, ), [arg], {}, ) arg = tx.pop() return arg if is_lazy: # The module type will change after it is called if mod.cls_to_become is not None: self.module_type = mod.cls_to_become # The pre-hook runs to initialize the module shapes, then deletes itself. After this, # the module is more or less not lazy and can be treated as a normal module regardless of # is_allowed or other variations. initialize_lazy_module(tx, mod, args, kwargs) # If we are tracing the higher order op, we want Dynamo to step # inside the module call so that Dynamo can see the underlying # parameters and buffers and raise them as inputs to the graph. if tx.output.is_root_tracer() and is_allowed(mod.__class__): if nnmodule_has_hooks( mod, check_forward_hooks=True, check_backward_hooks=True ): # End of fn, this bubbles up and restarts tracing. self.convert_to_unspecialized(tx) from .builder import wrap_fx_proxy return wrap_fx_proxy( tx=tx, proxy=tx.output.create_proxy( "call_module", self.module_key, *proxy_args_kwargs(args, kwargs), ), **options, ) else: assert self.source, ( "Must provide a valid source in order to inline, " "since inlined function may have default args which must be guarded." ) if isinstance(mod, torch.fx.GraphModule): # TODO: do we want to support __call__ for GM's? # If so at least some changes are needed, we don't allow inlining # the call_wrapped currently, and maybe other issues too fn = mod.forward else: fn = mod._call_impl fn_source = AttrSource(self.source, "__call__") if istype(fn, types.MethodType): fn = fn.__func__ fn_source = AttrSource(fn_source, "__func__") args = [self] + args else: assert istype(fn, types.FunctionType) options["source"] = fn_source return tx.inline_user_function_return( variables.UserFunctionVariable(fn, **options), args, kwargs, ) def call_method( self, tx, name, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", constant=False, ) -> "VariableTracker": from . import ConstantVariable, ListIteratorVariable, TupleVariable options = VariableTracker.propagate(self, args, kwargs.values()) key = self.module_key module = tx.output.get_submodule(key) def generic_call_method_helper(name): # Helper function to put a `call_method` node in FX graph, # with nn.Module as the first arg. mod_proxy = tx.output.create_proxy( "get_attr", self.module_key, tuple(), {}, ) mod_proxy.node.meta["example_value"] = module proxy_args, proxy_kwargs = proxy_args_kwargs(args, kwargs) from .builder import wrap_fx_proxy return wrap_fx_proxy( tx=tx, proxy=tx.output.create_proxy( "call_method", name, args=(mod_proxy, *proxy_args), kwargs=proxy_kwargs, ), **options, ) if name in ["_call_impl", "_wrapped_call_impl"]: # Example: `self.layer.__call__(x)` # This is used for explicit calling `__call__` in a forward function. # Dynamo inlines `__call__`, includes hooks. return self.call_function(tx, args, kwargs) elif name == "forward": # Example: `self.layer.forward(x)` # This is used for explicit calling `forward` in a forward function. # Dynamo puts `call_method` node in FX, doesn't trigger hooks. with record_nn_module_stack(self.module_key, self.source, tx, module): return generic_call_method_helper(name) if name == "_check_input_dim" and skipfiles.is_torch_inline_allowed( inspect.getfile(module.__class__._check_input_dim) ): return ConstantVariable.create(True, **options) if name == "_get_item_by_idx": assert args[1].is_python_constant() assert isinstance(args[0], TupleVariable) mod_var = args[0].items[args[1].value] if isinstance(mod_var, UnspecializedNNModuleVariable): return mod_var key = mod_var.module_key submod = tx.output.get_submodule(key) return tx.output.register_attr_or_module( submod, key, key, source=NNModuleSource(GetItemSource(self.source, key)), **options, ) if constant: fn = getattr(module, name) name = f"{module.__class__.__name__}_{name}_result" return invoke_and_store_as_constant(tx, fn, name, options, args, kwargs) def assert_all_args_kwargs_const(): if not all( x.is_python_constant() for x in itertools.chain(args, kwargs.values()) ): raise unimplemented(f"non-const NNModule method {name}") def get_kwargs(*names): assert_all_args_kwargs_const() fn = getattr(module, name) bound_args = inspect.signature(fn).bind( *([x.as_python_constant() for x in args]), **{k: v.as_python_constant() for k, v in kwargs.items()}, ) bound_args.apply_defaults() bound_args = bound_args.arguments return {k: bound_args[k] for k in names} def wrap_values(items): result = [] for name, submod in items: result.append( tx.output.register_attr_or_module( submod, key, name, source=NNModuleSource(gen_source(self.source, name)), **options, ) ) return ListIteratorVariable(result, mutable_local=MutableLocal(), **options) def named_embed(name, obj): return TupleVariable( [ ConstantVariable.create(name, **options), tx.output.register_attr_or_module( obj, key, name, source=NNModuleSource(gen_source(self.source, name)), **options, ), ] ) def gen_source(source, name): name_split = name.split(".") if name_split[0] == "": return source while len(name_split) > 0: x = name_split.pop(0) source = AttrSource(source, x) return source if name == "named_children": assert not (args or kwargs) result = [] for name, submod in module.named_children(): result.append(named_embed(name, submod)) return ListIteratorVariable(result, mutable_local=MutableLocal(), **options) elif name == "named_parameters": result = [] for name, param in module.named_parameters( **get_kwargs("prefix", "recurse") ): result.append(named_embed(name, param)) return ListIteratorVariable(result, mutable_local=MutableLocal(), **options) elif name == "named_buffers": result = [] for name, buffer in module.named_buffers( **get_kwargs("prefix", "recurse", "remove_duplicate") ): result.append(named_embed(name, buffer)) return ListIteratorVariable(result, mutable_local=MutableLocal(), **options) elif name == "named_modules": result = [] for name, submod in module.named_modules( **get_kwargs("memo", "prefix", "remove_duplicate") ): result.append(named_embed(name, submod)) return ListIteratorVariable(result, mutable_local=MutableLocal(), **options) elif name == "children": assert not (args or kwargs) return wrap_values(module.named_children()) elif name == "modules": return wrap_values(module.named_modules()) elif name == "parameters": return wrap_values(module.named_parameters(**get_kwargs("recurse"))) elif name == "buffers": return wrap_values(module.named_buffers(**get_kwargs("recurse"))) elif name == "keys": assert not (args or kwargs) result = [] for name in module.keys(): result.append(ConstantVariable.create(name, **options)) return ListIteratorVariable(result, mutable_local=MutableLocal(), **options) elif name == "values": assert not (args or kwargs) return wrap_values(module.items()) elif name == "items": assert not (args or kwargs) result = [] for name, submod in module.items(): result.append(named_embed(name, submod)) return ListIteratorVariable(result, mutable_local=MutableLocal(), **options) elif name == "__len__": assert not (args or kwargs) return ConstantVariable.create(len(module), **options) elif ( name == "__contains__" and isinstance(module, (torch.nn.ModuleDict, torch.nn.ParameterDict)) and args and args[0].is_python_constant() ): return ConstantVariable.create( args[0].as_python_constant() in module._modules, **options ) elif name == "__getitem__": assert not kwargs and len(args) == 1 builtin_supported = ( torch.nn.ModuleDict.__getitem__, torch.nn.ModuleList.__getitem__, torch.nn.ParameterDict.__getitem__, torch.nn.ParameterList.__getitem__, torch.nn.Sequential.__getitem__, ) if type(module).__getitem__ not in builtin_supported: assert isinstance(args[0], variables.ConstantVariable), typestr(args[0]) key = args[0].as_python_constant() assert isinstance(key, (str, int)) fn = getattr(module, name).__func__ assert isinstance(fn, types.FunctionType) src = AttrSource(AttrSource(self.source, name), "__func__") return tx.inline_user_function_return( variables.UserFunctionVariable(fn, source=src, **options), [self] + list(args), kwargs, ) assert self.source if isinstance(args[0], SliceVariable): # Build a TupleVariable of NNModules result = [] submods = [] # Turn the slice into the list of integers keys = list(range(len(module)))[args[0].as_python_constant()] for idx, submod in enumerate(module[args[0].as_python_constant()]): key = keys[idx] src = NNModuleSource(GetItemSource(self.source, key)) result.append( tx.output.register_attr_or_module( submod, key, source=src, **options, ) ) submods.append(submod) new_module = torch.nn.Sequential(*submods) new_module_variable = tx.output.register_attr_or_module( new_module, f"{self}.__getitem__(slice)", source=NNModuleSource( GetItemSource(self.source, args[0].as_python_constant()) ), **options, ) return new_module_variable key = args[0].as_python_constant() submod = module[key] return tx.output.register_attr_or_module( submod, self.module_key, key, source=NNModuleSource(GetItemSource(self.source, key)), **options, ) elif ( name == "_get_abs_string_index" or ( isinstance(module, torch.nn.modules.conv._ConvNd) and name == "_conv_forward" ) or ( isinstance(module, torch.nn.modules.conv._ConvTransposeNd) and name == "_output_padding" ) ): # Inline the function fn = getattr(module, name).__func__ fn_source = AttrSource(self.source, "__func__") options["source"] = fn_source return tx.inline_user_function_return( variables.UserFunctionVariable(fn, **options), [self] + args, kwargs, ) # A loose heuristic, but seems to be generally good before we drop into the # manual handling of inputs elif ( name in module.__class__.__dict__ and callable(module.__class__.__dict__[name]) and all( isinstance(x, variables.TensorVariable) for x in itertools.chain(args, kwargs.values()) ) ): return generic_call_method_helper(name) else: return super().call_method(tx, name, args, kwargs) class UnspecializedNNModuleVariable(UserDefinedObjectVariable): _nonvar_fields = {"value_type", *UserDefinedObjectVariable._nonvar_fields} """ The above class will specialize on the id() of a module and place parameters on the torch.fx.GraphModule. Giving one graph per module instance. This version treats nn.Modules() like other user defined objects and will pass parameters into the FX graph as inputs. Giving one graph per module class. """ def __init__(self, value, **kwargs): if type(value) is torch.jit._script.RecursiveScriptModule: raise Unsupported( "ScriptModules aren't supported in UnspecializedNNModuleVariable" " becuase their .forward function isn't a static member of their type" ) if "value_type" in kwargs: lazy_value_to_become = getattr(kwargs["value_type"], "cls_to_become", None) if type(value) is lazy_value_to_become: # We may have cloned a variabletracker for a LazyModule earlier (e.g. tracking side-effects) # and then later we called and mutated the LazyModule into a MaterializedModule. # We do not do the mutation upon first seeing a LazyModule since we preserve eager semantics to only # mutate upon first call, but this requires we update multiple copies of the VariableTracker post-mutation. kwargs["value_type"] = type(value) super().__init__(value=value, **kwargs) if self.source and self.source.is_nn_module(): # force guard checks even when `not config.guard_nn_modules`` self.source = NotNNModuleSource(self.source) @staticmethod @functools.lru_cache(None) def _nn_module_method_ids(): return { id(x.__code__) for x in torch.nn.Module.__dict__.values() if hasattr(x, "__code__") } def unpack_var_sequence(self, tx): from .builder import VariableBuilder try: fn = inspect.getattr_static(self.value_type, "__iter__") except AttributeError as e: raise NotImplementedError from e if fn in ( torch.nn.ModuleList.__iter__, torch.nn.ParameterList.__iter__, torch.nn.Sequential.__iter__, ): assert self.source return [ VariableBuilder(tx, source=GetItemSource(self.source, idx))( item ).add_options(self) for idx, item in enumerate(self.value) ] return super().unpack_var_sequence(tx) def call_function( self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]" ) -> "VariableTracker": options = VariableTracker.propagate(self, args, kwargs.values()) mod = self.value # see comment on lazy module handling in NNModuleVariable.call_function for context if is_lazy_module(mod): if mod.cls_to_become is not None: self.value_type = mod.cls_to_become initialize_lazy_module(tx, mod, args, kwargs) name = "_call_impl" fn = getattr(self.value_type, name) if self.source: source = AttrSource(AttrSource(self.source, "__class__"), name) else: source = None ctx = ( record_nn_module_stack(str(id(mod)), self.source, tx, mod) if self.source else nullcontext() ) with ctx: return variables.UserFunctionVariable( fn, source=source, **options ).call_function(tx, [self] + list(args), kwargs) def call_method( self, tx, name, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": from .builder import VariableBuilder options = VariableTracker.propagate(self, args, kwargs.values()) if name in ["_call_impl", "_wrapped_call_impl"]: fn = getattr(self.value_type, name) if self.source: source = AttrSource(AttrSource(self.source, "__class__"), name) else: source = None return variables.UserFunctionVariable( fn, source=source, **options ).call_function(tx, [self] + list(args), kwargs) if name not in getattr(self.value, "__dict__", {}): try: method = inspect.getattr_static(type(self.value), name) except AttributeError: method = None if method is torch.nn.Module.parameters: assert not args or kwargs if tx.output.side_effects.has_pending_mutation(self): unimplemented("Module.parameters() with pending mutation") options["guards"].add( self.source.make_guard(GuardBuilder.NN_MODULE_PARAM_NAMES) ) items = [] for name, value in self.value.named_parameters(): items.append( VariableBuilder(tx, AttrSource(self.source, name))( value ).add_options(options) ) return variables.ListIteratorVariable( items, mutable_local=MutableLocal(), **options ) elif isinstance(method, staticmethod): source = AttrSource( AttrSource(AttrSource(self.source, "__class__"), name), "__func__" ) return tx.inline_user_function_return( variables.UserFunctionVariable( method.__func__, source=source, **options ), args, kwargs, ) if id(method.__code__) in self._nn_module_method_ids(): unimplemented(f"UnspecializedNNModuleVariable missing {name}") return super().call_method(tx, name, args, kwargs) class FSDPManagedNNModuleVariable(UnspecializedNNModuleVariable): """ Tracing behavior: trace into submodules and treat them as Unspecialized, do not register parameters to the top-level, treat them as function inputs. Guards behavior: if 'skip_fsdp_guards', many guards that would be installed by a vanilla UnspecializedNNModuleVariable are simply dropped, on the basis that a user wrapping their model in FSDP(model) is already opting into a requirement to not modify internal model state, which would already break FSDP without compilation. """ def __init__(self, value, **kwargs): source = kwargs.get("source", None) assert ( source is not None ), "FSDPManagedNNModule depends on having an accurate source to control guarding." super().__init__(value=value, **kwargs) if torch._dynamo.config.skip_fsdp_guards: self.source = FSDPNNModuleSource(source) else: # this makes us behave like a usual UnspecializedNNModuleVariable for guarding purposes self.source = NotNNModuleSource(source)