#include #include using namespace torch; using namespace torch::nn; class TestModel : public CloneableModule { public: void initialize_containers() override { add(make(Linear(10, 3)), "l1"); add(make(Linear(3, 5)), "l2"); add(make(Linear(5, 100)), "l3"); } variable_list forward(variable_list input) override { return input; }; }; class NestedModel : public CloneableModule { public: void initialize_containers() override { add(make(Linear(5, 20)), "l1"); add(make(TestModel()), "test"); } void initialize_parameters() override { add(Var(at::CPU(at::kFloat).tensor({3, 2, 21}), false), "param"); } variable_list forward(variable_list input) override { return input; }; }; TEST_CASE("containers") { SECTION("conv") { SECTION("1d") { auto model = make(Conv1d(3, 2, 3).stride(2)); auto x = Var(at::CPU(at::kFloat).randn({2, 3, 5}), true); auto y = model->forward({x})[0]; Variable s = y.sum(); backward(s); REQUIRE(y.ndimension() == 4); REQUIRE(s.ndimension() == 0); for (auto i = 0; i < 3; i++) { REQUIRE(y.size(i) == 2); } REQUIRE(model->parameters()["weight"].grad().numel() == 3 * 2 * 3); } SECTION("2d") { SECTION("even") { auto model = make(Conv2d(3, 2, 3).stride(2)); auto x = Var(at::CPU(at::kFloat).randn({2, 3, 5, 5}), true); auto y = model->forward({x})[0]; Variable s = y.sum(); backward(s); REQUIRE(y.ndimension() == 4); REQUIRE(s.ndimension() == 0); for (auto i = 0; i < 4; i++) { REQUIRE(y.size(i) == 2); } REQUIRE(model->parameters()["weight"].grad().numel() == 3 * 2 * 3 * 3); } SECTION("uneven") { auto model = make(Conv2d(3, 2, IntVec({3, 2})).stride(2)); auto x = Var(at::CPU(at::kFloat).randn({2, 3, 5, 4}), true); auto y = model->forward({x})[0]; Variable s = y.sum(); backward(s); REQUIRE(y.ndimension() == 4); REQUIRE(s.ndimension() == 0); for (auto i = 0; i < 4; i++) { REQUIRE(y.size(i) == 2); } REQUIRE(model->parameters()["weight"].grad().numel() == 3 * 2 * 3 * 2); } } SECTION("3d") { auto model = make(Conv3d(3, 2, 3).stride(2)); auto x = Var(at::CPU(at::kFloat).randn({2, 3, 5, 5, 5}), true); auto y = model->forward({x})[0]; Variable s = y.sum(); backward(s); REQUIRE(y.ndimension() == 5); REQUIRE(s.ndimension() == 0); for (auto i = 0; i < 5; i++) { REQUIRE(y.size(i) == 2); } REQUIRE( model->parameters()["weight"].grad().numel() == 3 * 2 * 3 * 3 * 3); } } SECTION("linear") { SECTION("basic1") { auto model = make(Linear(5, 2)); auto x = Var(at::CPU(at::kFloat).randn({10, 5}), true); auto y = model->forward({x})[0]; Variable s = y.sum(); backward(s); REQUIRE(y.ndimension() == 2); REQUIRE(s.ndimension() == 0); REQUIRE(y.size(0) == 10); REQUIRE(y.size(1) == 2); REQUIRE(model->parameters()["weight"].grad().numel() == 2 * 5); } SECTION("sequential") { auto model = make(ContainerList() .append(make(Linear(10, 3))) .append(make(Linear(3, 5))) .append(make(Linear(5, 100)))); auto x = Var(at::CPU(at::kFloat).randn({1000, 10})); for (auto layer : *model) { x = layer->forward({x})[0]; x = x.clamp_min(0); // relu } backward(x); REQUIRE(x.ndimension() == 2); REQUIRE(x.size(0) == 1000); REQUIRE(x.size(1) == 100); REQUIRE(x.data().min().toCFloat() == 0); } SECTION("simple") { auto model = make(SimpleContainer()); auto l1 = model->add(make(Linear(10, 3)), "l1"); auto l2 = model->add(make(Linear(3, 5)), "l2"); auto l3 = model->add(make(Linear(5, 100)), "l3"); auto x = Var(at::CPU(at::kFloat).randn({1000, 10})); x = l1->forward({x})[0].clamp_min(0); x = l2->forward({x})[0].clamp_min(0); x = l3->forward({x})[0].clamp_min(0); backward(x); REQUIRE(x.ndimension() == 2); REQUIRE(x.size(0) == 1000); REQUIRE(x.size(1) == 100); REQUIRE(x.data().min().toCFloat() == 0); } } SECTION("clone") { auto model = make(TestModel()); auto model2 = model->clone(); auto m1param = model->parameters(); auto m2param = model2->parameters(); for (auto& param : m1param) { REQUIRE(param.second.allclose(m2param[param.first])); param.second.data().mul_(2); } for (auto& param : m1param) { REQUIRE(!param.second.allclose(m2param[param.first])); } } SECTION("embedding") { SECTION("basic") { int dict_size = 10; auto model = make(Embedding(dict_size, 2)); // Cannot get gradients to change indices (input) - only for embedding // params auto x = Var(at::CPU(at::kLong).tensor({10}).fill_(dict_size - 1), false); auto y = model->forward({x})[0]; Variable s = y.sum(); backward(s); REQUIRE(y.ndimension() == 2); REQUIRE(s.ndimension() == 0); REQUIRE(y.size(0) == 10); REQUIRE(y.size(1) == 2); REQUIRE(model->parameters()["weight"].grad().numel() == 2 * dict_size); } SECTION("list") { auto model = make(Embedding(6, 4)); auto x = Var(at::CPU(at::kLong).tensor({2, 3}).fill_(5), false); auto y = model->forward({x})[0]; Variable s = y.sum(); backward(s); REQUIRE(y.ndimension() == 3); REQUIRE(y.size(0) == 2); REQUIRE(y.size(1) == 3); REQUIRE(y.size(2) == 4); } } SECTION("dropout") { auto dropout = make(Dropout(0.5)); Variable x = Var(at::CPU(at::kFloat).ones(100)); Variable y = dropout->forward({x})[0]; backward(y); REQUIRE(y.ndimension() == 1); REQUIRE(y.size(0) == 100); // TODO: These two tests are flaky // https://github.com/pytorch/pytorch/issues/7286 // REQUIRE(y.sum().toCFloat() < 130); // Probably // REQUIRE(y.sum().toCFloat() > 70); // Probably dropout->eval(); y = dropout->forward({x})[0]; REQUIRE(y.data().sum().toCFloat() == 100); } SECTION("param") { auto model = make(NestedModel()); REQUIRE(model->param("param").size(0) == 3); REQUIRE(model->param("param").size(1) == 2); REQUIRE(model->param("param").size(2) == 21); REQUIRE(model->param("l1.bias").size(0) == 20); REQUIRE(model->param("l1.weight").size(0) == 20); REQUIRE(model->param("l1.weight").size(1) == 5); REQUIRE(model->param("test.l1.bias").size(0) == 3); REQUIRE(model->param("test.l1.weight").size(0) == 3); REQUIRE(model->param("test.l1.weight").size(1) == 10); REQUIRE(model->param("test.l2.bias").size(0) == 5); REQUIRE(model->param("test.l2.weight").size(0) == 5); REQUIRE(model->param("test.l2.weight").size(1) == 3); REQUIRE(model->param("test.l3.bias").size(0) == 100); REQUIRE(model->param("test.l3.weight").size(0) == 100); REQUIRE(model->param("test.l3.weight").size(1) == 5); } } TEST_CASE("containers_cuda", "[cuda]") { SECTION("1") { auto model = make(Linear(5, 2)); model->cuda(); auto x = Var(at::CUDA(at::kFloat).randn({10, 5}), true); auto y = model->forward({x})[0]; Variable s = y.sum(); backward(s); REQUIRE(y.ndimension() == 2); REQUIRE(s.ndimension() == 0); REQUIRE(y.size(0) == 10); REQUIRE(y.size(1) == 2); REQUIRE(model->parameters()["weight"].grad().numel() == 2 * 5); } SECTION("2") { auto model = make(Linear(5, 2)); model->cuda(); model->cpu(); auto x = Var(at::CPU(at::kFloat).randn({10, 5}), true); auto y = model->forward({x})[0]; Variable s = y.sum(); backward(s); REQUIRE(y.ndimension() == 2); REQUIRE(s.ndimension() == 0); REQUIRE(y.size(0) == 10); REQUIRE(y.size(1) == 2); REQUIRE(model->parameters()["weight"].grad().numel() == 2 * 5); } }