# This script outputs relevant system environment info # Run it with `python collect_env.py`. from __future__ import absolute_import, division, print_function, unicode_literals import re import subprocess import sys import os from collections import namedtuple try: import torch TORCH_AVAILABLE = True except (ImportError, NameError, AttributeError): TORCH_AVAILABLE = False PY3 = sys.version_info >= (3, 0) # System Environment Information SystemEnv = namedtuple('SystemEnv', [ 'torch_version', 'is_debug_build', 'cuda_compiled_version', 'gcc_version', 'cmake_version', 'os', 'python_version', 'is_cuda_available', 'cuda_runtime_version', 'nvidia_driver_version', 'nvidia_gpu_models', 'cudnn_version', 'pip_version', # 'pip' or 'pip3' 'pip_packages', 'conda_packages', ]) def run(command): """Returns (return-code, stdout, stderr)""" p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) output, err = p.communicate() rc = p.returncode if PY3: output = output.decode("utf-8") err = err.decode("utf-8") return rc, output.strip(), err.strip() def run_and_read_all(run_lambda, command): """Runs command using run_lambda; reads and returns entire output if rc is 0""" rc, out, _ = run_lambda(command) if rc != 0: return None return out def run_and_parse_first_match(run_lambda, command, regex): """Runs command using run_lambda, returns the first regex match if it exists""" rc, out, _ = run_lambda(command) if rc != 0: return None match = re.search(regex, out) if match is None: return None return match.group(1) def get_conda_packages(run_lambda): if get_platform() == 'win32': grep_cmd = r'findstr /R "torch soumith mkl magma"' else: grep_cmd = r'grep "torch\|soumith\|mkl\|magma"' conda = os.environ.get('CONDA_EXE', 'conda') out = run_and_read_all(run_lambda, conda + ' list | ' + grep_cmd) if out is None: return out # Comment starting at beginning of line comment_regex = re.compile(r'^#.*\n') return re.sub(comment_regex, '', out) def get_gcc_version(run_lambda): return run_and_parse_first_match(run_lambda, 'gcc --version', r'gcc (.*)') def get_cmake_version(run_lambda): return run_and_parse_first_match(run_lambda, 'cmake --version', r'cmake (.*)') def get_nvidia_driver_version(run_lambda): if get_platform() == 'darwin': cmd = 'kextstat | grep -i cuda' return run_and_parse_first_match(run_lambda, cmd, r'com[.]nvidia[.]CUDA [(](.*?)[)]') smi = get_nvidia_smi() return run_and_parse_first_match(run_lambda, smi, r'Driver Version: (.*?) ') def get_gpu_info(run_lambda): if get_platform() == 'darwin': if TORCH_AVAILABLE and torch.cuda.is_available(): return torch.cuda.get_device_name(None) return None smi = get_nvidia_smi() uuid_regex = re.compile(r' \(UUID: .+?\)') rc, out, _ = run_lambda(smi + ' -L') if rc != 0: return None # Anonymize GPUs by removing their UUID return re.sub(uuid_regex, '', out) def get_running_cuda_version(run_lambda): return run_and_parse_first_match(run_lambda, 'nvcc --version', r'V(.*)$') def get_cudnn_version(run_lambda): """This will return a list of libcudnn.so; it's hard to tell which one is being used""" if get_platform() == 'win32': cudnn_cmd = 'where /R "%CUDA_PATH%\\bin" cudnn*.dll' elif get_platform() == 'darwin': # CUDA libraries and drivers can be found in /usr/local/cuda/. See # https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#install # https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installmac # Use CUDNN_LIBRARY when cudnn library is installed elsewhere. cudnn_cmd = 'ls /usr/local/cuda/lib/libcudnn*' else: cudnn_cmd = 'ldconfig -p | grep libcudnn | rev | cut -d" " -f1 | rev' rc, out, _ = run_lambda(cudnn_cmd) # find will return 1 if there are permission errors or if not found if len(out) == 0 or (rc != 1 and rc != 0): l = os.environ.get('CUDNN_LIBRARY') if l is not None and os.path.isfile(l): return os.path.realpath(l) return None files = set() for fn in out.split('\n'): fn = os.path.realpath(fn) # eliminate symbolic links if os.path.isfile(fn): files.add(fn) if not files: return None # Alphabetize the result because the order is non-deterministic otherwise files = list(sorted(files)) if len(files) == 1: return files[0] result = '\n'.join(files) return 'Probably one of the following:\n{}'.format(result) def get_nvidia_smi(): # Note: nvidia-smi is currently available only on Windows and Linux smi = 'nvidia-smi' if get_platform() == 'win32': smi = '"C:\\Program Files\\NVIDIA Corporation\\NVSMI\\%s"' % smi return smi def get_platform(): if sys.platform.startswith('linux'): return 'linux' elif sys.platform.startswith('win32'): return 'win32' elif sys.platform.startswith('cygwin'): return 'cygwin' elif sys.platform.startswith('darwin'): return 'darwin' else: return sys.platform def get_mac_version(run_lambda): return run_and_parse_first_match(run_lambda, 'sw_vers -productVersion', r'(.*)') def get_windows_version(run_lambda): return run_and_read_all(run_lambda, 'wmic os get Caption | findstr /v Caption') def get_lsb_version(run_lambda): return run_and_parse_first_match(run_lambda, 'lsb_release -a', r'Description:\t(.*)') def check_release_file(run_lambda): return run_and_parse_first_match(run_lambda, 'cat /etc/*-release', r'PRETTY_NAME="(.*)"') def get_os(run_lambda): platform = get_platform() if platform == 'win32' or platform == 'cygwin': return get_windows_version(run_lambda) if platform == 'darwin': version = get_mac_version(run_lambda) if version is None: return None return 'Mac OSX {}'.format(version) if platform == 'linux': # Ubuntu/Debian based desc = get_lsb_version(run_lambda) if desc is not None: return desc # Try reading /etc/*-release desc = check_release_file(run_lambda) if desc is not None: return desc return platform # Unknown platform return platform def get_pip_packages(run_lambda): # People generally have `pip` as `pip` or `pip3` def run_with_pip(pip): if get_platform() == 'win32': grep_cmd = r'findstr /R "numpy torch"' else: grep_cmd = r'grep "torch\|numpy"' return run_and_read_all(run_lambda, pip + ' list --format=freeze | ' + grep_cmd) if not PY3: return 'pip', run_with_pip('pip') # Try to figure out if the user is running pip or pip3. out2 = run_with_pip('pip') out3 = run_with_pip('pip3') num_pips = len([x for x in [out2, out3] if x is not None]) if num_pips == 0: return 'pip', out2 if num_pips == 1: if out2 is not None: return 'pip', out2 return 'pip3', out3 # num_pips is 2. Return pip3 by default b/c that most likely # is the one associated with Python 3 return 'pip3', out3 def get_env_info(): run_lambda = run pip_version, pip_list_output = get_pip_packages(run_lambda) if TORCH_AVAILABLE: version_str = torch.__version__ debug_mode_str = torch.version.debug cuda_available_str = torch.cuda.is_available() cuda_version_str = torch.version.cuda else: version_str = debug_mode_str = cuda_available_str = cuda_version_str = 'N/A' return SystemEnv( torch_version=version_str, is_debug_build=debug_mode_str, python_version='{}.{}'.format(sys.version_info[0], sys.version_info[1]), is_cuda_available=cuda_available_str, cuda_compiled_version=cuda_version_str, cuda_runtime_version=get_running_cuda_version(run_lambda), nvidia_gpu_models=get_gpu_info(run_lambda), nvidia_driver_version=get_nvidia_driver_version(run_lambda), cudnn_version=get_cudnn_version(run_lambda), pip_version=pip_version, pip_packages=pip_list_output, conda_packages=get_conda_packages(run_lambda), os=get_os(run_lambda), gcc_version=get_gcc_version(run_lambda), cmake_version=get_cmake_version(run_lambda), ) env_info_fmt = """ PyTorch version: {torch_version} Is debug build: {is_debug_build} CUDA used to build PyTorch: {cuda_compiled_version} OS: {os} GCC version: {gcc_version} CMake version: {cmake_version} Python version: {python_version} Is CUDA available: {is_cuda_available} CUDA runtime version: {cuda_runtime_version} GPU models and configuration: {nvidia_gpu_models} Nvidia driver version: {nvidia_driver_version} cuDNN version: {cudnn_version} Versions of relevant libraries: {pip_packages} {conda_packages} """.strip() def pretty_str(envinfo): def replace_nones(dct, replacement='Could not collect'): for key in dct.keys(): if dct[key] is not None: continue dct[key] = replacement return dct def replace_bools(dct, true='Yes', false='No'): for key in dct.keys(): if dct[key] is True: dct[key] = true elif dct[key] is False: dct[key] = false return dct def prepend(text, tag='[prepend]'): lines = text.split('\n') updated_lines = [tag + line for line in lines] return '\n'.join(updated_lines) def replace_if_empty(text, replacement='No relevant packages'): if text is not None and len(text) == 0: return replacement return text def maybe_start_on_next_line(string): # If `string` is multiline, prepend a \n to it. if string is not None and len(string.split('\n')) > 1: return '\n{}\n'.format(string) return string mutable_dict = envinfo._asdict() # If nvidia_gpu_models is multiline, start on the next line mutable_dict['nvidia_gpu_models'] = \ maybe_start_on_next_line(envinfo.nvidia_gpu_models) # If the machine doesn't have CUDA, report some fields as 'No CUDA' dynamic_cuda_fields = [ 'cuda_runtime_version', 'nvidia_gpu_models', 'nvidia_driver_version', ] all_cuda_fields = dynamic_cuda_fields + ['cudnn_version'] all_dynamic_cuda_fields_missing = all( mutable_dict[field] is None for field in dynamic_cuda_fields) if TORCH_AVAILABLE and not torch.cuda.is_available() and all_dynamic_cuda_fields_missing: for field in all_cuda_fields: mutable_dict[field] = 'No CUDA' if envinfo.cuda_compiled_version is None: mutable_dict['cuda_compiled_version'] = 'None' # Replace True with Yes, False with No mutable_dict = replace_bools(mutable_dict) # Replace all None objects with 'Could not collect' mutable_dict = replace_nones(mutable_dict) # If either of these are '', replace with 'No relevant packages' mutable_dict['pip_packages'] = replace_if_empty(mutable_dict['pip_packages']) mutable_dict['conda_packages'] = replace_if_empty(mutable_dict['conda_packages']) # Tag conda and pip packages with a prefix # If they were previously None, they'll show up as ie '[conda] Could not collect' if mutable_dict['pip_packages']: mutable_dict['pip_packages'] = prepend(mutable_dict['pip_packages'], '[{}] '.format(envinfo.pip_version)) if mutable_dict['conda_packages']: mutable_dict['conda_packages'] = prepend(mutable_dict['conda_packages'], '[conda] ') return env_info_fmt.format(**mutable_dict) def get_pretty_env_info(): return pretty_str(get_env_info()) def main(): print("Collecting environment information...") output = get_pretty_env_info() print(output) if __name__ == '__main__': main()