from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core, workspace from caffe2.python.test_util import TestCase import numpy as np class TestSparseToDenseMask(TestCase): def test_sparse_to_dense_mask_float(self): op = core.CreateOperator( 'SparseToDenseMask', ['indices', 'values', 'default', 'lengths'], ['output'], mask=[999999999, 2, 6]) workspace.FeedBlob( 'indices', np.array([2, 4, 6, 1, 2, 999999999, 2], dtype=np.int32)) workspace.FeedBlob( 'values', np.array([1, 2, 3, 4, 5, 6, 7], dtype=np.float)) workspace.FeedBlob('default', np.array(-1, dtype=np.float)) workspace.FeedBlob('lengths', np.array([3, 4], dtype=np.int32)) workspace.RunOperatorOnce(op) output = workspace.FetchBlob('output') expected = np.array([[-1, 1, 3], [6, 7, -1]], dtype=np.float) self.assertEqual(output.shape, expected.shape) np.testing.assert_array_equal(output, expected) def test_sparse_to_dense_mask_invalid_inputs(self): op = core.CreateOperator( 'SparseToDenseMask', ['indices', 'values', 'default', 'lengths'], ['output'], mask=[999999999, 2], max_skipped_indices=3) workspace.FeedBlob( 'indices', np.array([2000000000000, 999999999, 2, 3, 4, 5], dtype=np.int32)) workspace.FeedBlob( 'values', np.array([1, 2, 3, 4, 5, 6], dtype=np.float)) workspace.FeedBlob('default', np.array(-1, dtype=np.float)) workspace.FeedBlob('lengths', np.array([6], dtype=np.int32)) try: workspace.RunOperatorOnce(op) except RuntimeError: self.fail("Exception raised with only one negative index") # 3 invalid inputs should throw. workspace.FeedBlob( 'indices', np.array([-1, 1, 2, 3, 4, 5], dtype=np.int32)) with self.assertRaises(RuntimeError): workspace.RunOperatorMultiple(op, 3) def test_sparse_to_dense_mask_subtensor(self): op = core.CreateOperator( 'SparseToDenseMask', ['indices', 'values', 'default', 'lengths'], ['output'], mask=[999999999, 2, 888, 6]) workspace.FeedBlob( 'indices', np.array([2, 4, 6, 999999999, 2], dtype=np.int64)) workspace.FeedBlob( 'values', np.array([[[1, -1]], [[2, -2]], [[3, -3]], [[4, -4]], [[5, -5]]], dtype=np.float)) workspace.FeedBlob('default', np.array([[-1, 0]], dtype=np.float)) workspace.FeedBlob('lengths', np.array([2, 3], dtype=np.int32)) workspace.RunOperatorOnce(op) output = workspace.FetchBlob('output') expected = np.array([ [[[-1, 0]], [[1, -1]], [[-1, 0]], [[-1, 0]]], [[[4, -4]], [[5, -5]], [[-1, 0]], [[3, -3]]]], dtype=np.float) self.assertEqual(output.shape, expected.shape) np.testing.assert_array_equal(output, expected) def test_sparse_to_dense_mask_string(self): op = core.CreateOperator( 'SparseToDenseMask', ['indices', 'values', 'default', 'lengths'], ['output'], mask=[999999999, 2, 6]) workspace.FeedBlob( 'indices', np.array([2, 4, 6, 1, 2, 999999999, 2], dtype=np.int32)) workspace.FeedBlob( 'values', np.array(['1', '2', '3', '4', '5', '6', '7'], dtype='S')) workspace.FeedBlob('default', np.array('-1', dtype='S')) workspace.FeedBlob('lengths', np.array([3, 4], dtype=np.int32)) workspace.RunOperatorOnce(op) output = workspace.FetchBlob('output') expected =\ np.array([['-1', '1', '3'], ['6', '7', '-1']], dtype='S') self.assertEqual(output.shape, expected.shape) np.testing.assert_array_equal(output, expected) def test_sparse_to_dense_mask_empty_lengths(self): op = core.CreateOperator( 'SparseToDenseMask', ['indices', 'values', 'default'], ['output'], mask=[1, 2, 6]) workspace.FeedBlob('indices', np.array([2, 4, 6], dtype=np.int32)) workspace.FeedBlob('values', np.array([1, 2, 3], dtype=np.float)) workspace.FeedBlob('default', np.array(-1, dtype=np.float)) workspace.RunOperatorOnce(op) output = workspace.FetchBlob('output') expected = np.array([-1, 1, 3], dtype=np.float) self.assertEqual(output.shape, expected.shape) np.testing.assert_array_equal(output, expected) def test_sparse_to_dense_mask_no_lengths(self): op = core.CreateOperator( 'SparseToDenseMask', ['indices', 'values', 'default'], ['output'], mask=[1, 2, 6]) workspace.FeedBlob('indices', np.array([2, 4, 6], dtype=np.int32)) workspace.FeedBlob('values', np.array([1, 2, 3], dtype=np.float)) workspace.FeedBlob('default', np.array(-1, dtype=np.float)) workspace.RunOperatorOnce(op) output = workspace.FetchBlob('output') expected = np.array([-1, 1, 3], dtype=np.float) self.assertEqual(output.shape, expected.shape) np.testing.assert_array_equal(output, expected) def test_sparse_to_dense_mask_presence_mask(self): op = core.CreateOperator( 'SparseToDenseMask', ['indices', 'values', 'default', 'lengths'], ['output', 'presence_mask'], mask=[11, 12], return_presence_mask=True) workspace.FeedBlob('indices', np.array([11, 12, 13], dtype=np.int32)) workspace.FeedBlob('values', np.array([11, 12, 13], dtype=np.float)) workspace.FeedBlob('default', np.array(-1, dtype=np.float)) workspace.FeedBlob('lengths', np.array([1, 2], dtype=np.int32)) workspace.RunOperatorOnce(op) output = workspace.FetchBlob('output') presence_mask = workspace.FetchBlob('presence_mask') expected_output = np.array([[11, -1], [-1, 12]], dtype=np.float) expected_presence_mask = np.array( [[True, False], [False, True]], dtype=np.bool) self.assertEqual(output.shape, expected_output.shape) np.testing.assert_array_equal(output, expected_output) self.assertEqual(presence_mask.shape, expected_presence_mask.shape) np.testing.assert_array_equal(presence_mask, expected_presence_mask)